Characterization of the Carcinus maenas neuropeptidome by mass spectrometry and functional genomics (original) (raw)

2009, General and Comparative Endocrinology

Carcinus maenas, commonly known as the European green crab, is one of the best-known and most successful marine invasive species. While a variety of natural and anthropogenic mechanisms are responsible for the geographic spread of this crab, its ability to adapt physiologically to a broad range of salinities, temperatures and other environmental factors has enabled successful establishment in these new habitats. To extend our understanding of hormonal control in C. maenas, including factors that allow for its extreme adaptability, we have undertaken a mass spectral/functional genomics investigation of the neuropeptides used by this organism. Via a strategy combining MALDI-based high resolution mass profiling, biochemical derivatization, and nanoscale separation coupled to tandem mass spectrometric sequencing, 122 peptide paracrines/hormones were identified from the C. maenas central nervous system and neuroendocrine organs. These peptides include 31 previously described Carcinus neuropeptides (e.g. NSELINSILGLPKVMNDAamide [β-pigment dispersing hormone] and PFCNAFTGCamide [crustacean cardioactive peptide]), 49 peptides only described in species other than the green crab (e.g. pQTFQYSRGWTNamide [Arg 7 -corazonin]), and 42 new peptides de novo sequenced here for the first time (e.g. the pyrokinins TSFAFSPRLamide and DTGFAFSPRLamide). Of particular note are a collection of 25 FMRFamide-like peptides (including 9 new isoforms sequenced de novo) and a collection of 25 A-type allatostatin peptides (including 10 new sequences reported for the first time) in this study. Both peptide families are among the most diverse families, each containing a large number of isoforms in arthropod species. Also of interest was the identification of two SIFamide isoforms, GYRKPPFNGSIFamide and VYRKPPFNGSIFamide, the latter peptide known previously only from members of the astacidean genus Homarus. Using transcriptome analyses, 15 additional peptides were characterized, including an isoform of bursicon β and a neuroparsin-like peptide. Collectively, the data presented in this study not only greatly expand the number of identified C. maenas neuropeptides, but also provide a framework for future investigations of the physiological roles played by these molecules in this highly adaptable species.