Morphometrical evolution in a Drosophila clade: the Drosophila obscura group (original) (raw)
Related papers
Genetika
Darwinian theory of evolution states that, evolution occurs through the natural selection. Therefore, demonstration of natural selection in nature is the central aim of many evolutionary studies and selection acts primarily at the phenotypic level because it is well known that phenotypic traits are the primary target of natural selection. While keeping this in view, we have studied certain morphometric traits in the sibling species pair, D. ananassae and D. pallidosa to test intra- and interspecific variations. The traits studied are wing length, thorax length, ratio of wing length and thorax length, sternopleural bristle number, ovariole number and sex-comb tooth number. In females of D. ananassae, significant strain differences were found for all the traits except ovariole number. In males, significant strain differences were found for all the traits. On the other hand, in D. pallidosa, significant strain differences were found for all the traits in both, males and females. The va...
Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup
BMC Evolutionary Biology, 2009
Background Sexual dimorphism of body size has been the subject of numerous studies, but few have examined sexual shape dimorphism (SShD) and its evolution. Allometry, the shape change associated with size variation, has been suggested to be a main component of SShD. Yet little is known about the relative importance of the allometric and non-allometric components for the evolution of SShD. Results We investigated sexual dimorphism in wing shape in the nine species of the Drosophila melanogaster subgroup. We used geometric morphometrics to characterise wing shape and found significant SShD in all nine species. The amount of shape difference and the diversity of the shape changes evolved across the group. However, mapping the divergence of SShD onto the phylogeny of the Drosophila melanogaster subgroup indicated that there is little phylogenetic signal. Finally, allometry accounted for a substantial part of SShD, but did not explain the bulk of evolutionary divergence in SShD because allometry itself was found to be evolutionarily plastic. Conclusion SShD in the Drosophila wing can evolve rapidly and therefore shows only weak phylogenetic structure. The variable contribution of allometric and non-allometric components to the evolutionary divergence of SShD and the evolutionary plasticity of allometry suggest that SShD and allometry are influenced by a complex interaction of processes.
Turkish Journal of Entomology, 2018
Literature concerning phenotypic variation among wild-caught drosophilids inhabiting varied ecological habitats is relatively rare. The present study explores pattern of body size traits along altitudinal gradients, and compensation to colder environments and reduced air pressure via adjustment of wing morphology at higher altitudes. Wild adult flies were collected in two extensive surveys during September-October 2014 and April-May 2015. All traits were measured for both the sexes to obtain data on sexual dimorphism. It was found that though these populations differed significantly in their size, as already known, they deviated from the expected reaction norms of size increase along altitudinal gradients as observed in several previous studies. This deviation from normal clinal trend can be attributed to variation in growth rates and development times at different altitudes which has important implications in overall reproductive success. Also, a significant increase in wing area of flies at higher altitude was recorded with dramatically lower wing loadings than flies that developed in comparatively warmer habitats, giving them an aerodynamic advantage at cold temperatures. Thorax width was also analyzed, possibly for the first time in wild-caught flies of Indian populations, revealing sexual dimorphism. The ratio of thorax length to width was greater than one for all species indicating that the thorax is more elongated in females, which may also influence the flight capacity of the sexes.
Genetica, 1999
Traditional morphometrics' allows us to decompose morphological variation into its major independent sources, identifying them usually as size and shape. To compare and investigate the properties of size and shape in natural populations of Drosophila mediopunctata, estimating their heritabilities and analysing their temporal and microgeographic changes, we carried out collections on seven occasions in Parque Nacional do Itatiaia, Brazil. In one of these collections, we took samples from five different altitudes. Measurements were taken from wild caught inseminated females and up to three of their laboratory-reared daughters. Through a principal component analysis, three major sources of variation were identified as due to size (the first one) and shape (the remaining two). The overall amount of variation among laboratory flies was about half of that observed among wild flies and this reduction was primarily due to size. Shape variation was about the same under natural and artificial conditions. A genetic altitudinal cline was detected for size and shape, although altitude explained only a small part of their variation. Differences among collections were detected both for size and shape in wild and laboratory flies, but no simple pattern emerged. Shape variation had high heritability in nature, close to or above 40% and did not vary significantly temporally. Although on the overall size heritability (18 ± 6%) was significant its estimates were not consistent along months-they were non-significant in all but one month, when it reached a value of 51 ± 11%. Overall, this suggests that size and shape have different genetic properties.
Heredity, 2004
The fruit-flies Drosophila paranaensis and Drosophila mercatorum pararepleta are sibling species belonging to the repleta group. Females of these two species are normally considered to be morphologically indistinguishable while males only differ consistently in the morphology of their genitalia. These species are sympatric throughout a large area of their geographic distribution. In this study, we investigated the degree of morphological divergence between D. paranaensis and D. mercatorum pararepleta based on morphometric analysis of their wings. The ellipse method was used to describe the placement of the longitudinal and transversal wing veins as well as the size of the wing and the shape of its outline. The heritability under laboratory and field conditions was also estimated from the parameters generated. Multivariate analysis showed that wing morphology possessed sufficient differences to discriminate between the two species with a successful classification rate of 95-98% for females and 82-87% for males. The results of the autoclassification were confirmed by a cross-validation test for females (92-96%). Most measurements possessed significant natural heritability (a mean of 0.48 for D. mercatorum and 0.88 for D. paranaensis), indicating that the variation observed was related to differences in genes acting additively. The principal difference between the two species was in the placement of the posterior transverse wing vein. However, the pattern of morphological variation in the wings of both species was similar, possibly because of shared restrictions in wing development pathways.
Genome, 2006
Fluctuating asymmetry (FA, subtle random deviations from perfect bilateral symmetry) is often used as a measure of developmental instability (DI), which results from perturbations in developmental pathways caused by genetic or environmental stressors. During the present study, we estimated FA in 5 morphological traits, viz. wing length (WL), wing to thorax ratio (W:T), sternopleural bristle number (SBN), sex-comb tooth number (SCTN), and ovariole number (ON) in 18 laboratory populations of Drosophila ananassae. FA levels of measured traits differed significantly among populations except for SBN (in males and females) and W:T ratio (in females). Positional fluctuating asymmetry (PFA), a sensitive measure of DI, also varied significantly among the populations for SBN in females and SCTN in males. Interestingly, both males and females were similar for nonsexual traits. However, when FA across all traits (sexual and nonsexual) was combined into a single composite index (CFA), significan...
Evolution, 2005
Drosophila polymorpha is a widespread species that exhibits abdominal pigmentation variation throughout its range. To gain insight into this variation we combined phenotypic and genotypic data to test a series of nested hypotheses. First, we tested the null hypothesis that geographic variation in pigmentation is due to neutral factors. We used nested clade analysis to examine the distribution of haplotypes from a nuclear and a mitochrondrial locus. Restricted gene flow via isolation by distance, the primary inference of this phylogeographic analysis, was then used to generate and test the hypothesis of increasing average abdominal pigmentation difference with increasing geographic distance. We found no correlation between geographic distance and phenotypic distance. We then tested the hypothesis that pigmentation is affected by environmental differences among localities. We found a significant effect of habitat type on the average abdominal pigmentation phenotype of different localities. Finally, we tested the hypothesis that pigmentation in D. polymorpha is associated with desiccation resistance. We found that dark individuals of both sexes survived significantly longer in a desiccating environment than light individuals. These patterns combined lead us to hypothesize that abdominal pigmentation variation in D. polymorpha is important in mediating the organism's interactions with local ecological factors.
Related topics
Cited by
Anais Da Academia Brasileira De Ciencias, 2006
Drosophila serido and D. antonietae are sibling species belonging to the Drosophila buzzatii cluster. Morphologically, they can only be discriminated by quantitative traits. In this paper we analyze the length and equalized average curvature of four regions of the aedeagus of D. antonietae and D. serido. Specimens of D. serido and D. antonietae were classified correctly 96.74% of the time. Based only on the variable that most contributed to the discrimination of the groups (equalized average curvature of the arch IV of the aedeagus), we observed significant intraspecific morphological divergence in D. serido in relation to the D. antonietae, in agreement with other markers. The high morphological divergence in equalized average curvature of the arch IV of the aedeagus shows that this region evolved faster than others, since the divergence of the two species. The importance of the present study to the understanding of the genetic basis that controls the formation of the aedeagus, in the species of the Drosophila buzzatii cluster, is discussed.
Journal of Genetics, 2011
Thirty isofemale lines collected in three different years from the same wild French population were grown at seven different temperatures (12-31 • C). Two linear measures, wing and thorax length, were taken on 10 females and 10 males of each line at each temperature, also enabling the calculation of the wing/thorax (W/T) ratio, a shape index related to wing loading. Genetic correlations were calculated using family means. The W-T correlation was independent of temperature and on average, 0.75. For each line, characteristic values of the temperature reaction norm were calculated, i.e. maximum value, temperature of maximum value and curvature. Significant negative correlations were found between curvature and maximum value or temperature of maximum value. Sexual dimorphism was analysed by considering either the correlation between sexes or the female/male ratio. Female-male correlation was on average 0.75 at the within line, within temperature level but increased up to 0.90 when all temperatures were averaged for each line. The female/male ratio was genetically variable among lines but without any temperature effect. For the female/male ratio, heritability (intraclass correlation) was about 0.20 and evolvability (genetic coefficient of variation) close to 1. Although significant, these values are much less than for the traits themselves. Phenotypic plasticity of sexual dimorphism revealed very similar reaction norms for wing and thorax length, i.e. a monotonically increasing sigmoid curve from about 1.11 up to 1.17. This shows that the males are more sensitive to a thermal increase than females. In contrast, the W/T ratio was almost identical in both sexes, with only a very slight temperature effect.
Realized evolvability: quantifying phenotypic evolution in a Drosophila clade
Journal of Zoological Systematics and Evolutionary Research, 2011
Understanding the evolutionary potential of morphological evolution is still a major problem in evolutionary biology. In this study, we tried to quantify the amount of variation of different traits among species of a Drosophila clade reared under standard conditions. Nineteen different traits have been measured on nine species of the same clade, the Neotropical saltans group of Drosophila. Measured traits can be distributed into five categories: size-traits (wing and thorax), shape indices (ratios among the size traits), number of sternopleural bristles on the thorax, number of abdominal bristles on successive sternites, and dorsal pigmentation of abdomen. All species are of medium size with a generally dark pigmentation. A remarkable feature is the presence of numerous bristles on the 6th sternite of the males, while this segment is bare in other Drosophila species. A multivariate analysis revealed that it was possible to discriminate all the investigated species by using the complete set of measured traits. For each trait, phenotypic variability was investigated at the within-and between-species levels. As a rule, the interspecific coefficient of variation (CV) was much greater than the within species CV, and it is proposed to call it realized evolvability. All possible correlations were calculated between traits across species, providing many unexpected results. Size traits were highly correlated among them, but not correlated with shape indices. Abdominal traits (bristles and pigmentation) were correlated, but often in opposite directions, with thoracic shape indices. Tergite pigmentation was negatively correlated with bristle number on sternite. For the moment, most of the correlations cannot be explained by developmental processes or parallel selective pressures. Nonetheless, mapping the evolution of the two characters on a molecular phylogeny of the studied species revealed two opposite phylogenetic trends for abdominal pigmentation and setation, respectively. Our data suggest a need for similar studies in other well-defined Drosophila clades.
New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods
Proceedings of the National Academy of Sciences of the United States of America, 2015
It has been suggested that we do not know within an order of magnitude the number of all species on Earth [May RM (1988) Science 241(4872):1441-1449]. Roughly 1.5 million valid species of all organisms have been named and described [Costello MJ, Wilson S, Houlding B (2012) Syst Biol 61(5):871-883]. Given Kingdom Animalia numerically dominates this list and virtually all terrestrial vertebrates have been described, the question of how many terrestrial species exist is all but reduced to one of how many arthropod species there are. With beetles alone accounting for about 40% of all described arthropod species, the truly pertinent question is how many beetle species exist. Here we present four new and independent estimates of beetle species richness, which produce a mean estimate of 1.5 million beetle species. We argue that the surprisingly narrow range (0.9-2.1 million) of these four autonomous estimates-derived from host-specificity relationships, ratios with other taxa, plant:beetle...
Entomological Science, 2009
We describe three new species of the Drosophila obscura species group, D. hypercephala, D. hideakii and D. quadrangula Gao & Toda, spp. nov., all discovered from high altitudes (>1500 m) on Mt Kinabalu, Sabah, Malaysia. These are the southernmost distribution records of the D. obscura group in the Oriental Region. The three new species are each morphologically similar to different species of the Old World D. obscura species subgroup. This suggests that they are descendants of different founder species that independently colonized the tropics from the subtropical or temperate zones during the glacial ages. The new species D. hypercephala is hypercephalic not only in males but also, although less distinct, in females, unlike other hypercephalic drosophilid species in which only males are hypercephalic. This new finding of a hypercephalic species from the subgenus Sophophora, of which species are relatively easy to culture in the laboratory and include the model species such as D. melanogaster and D. pseudoobscura, will promote genetic analyses on the development and the evolution of hypercephaly.
Proceedings of the Royal Society B: Biological Sciences
Spermatozoa are the most morphologically diverse cell type, leading to the widespread assumption that they evolve rapidly. However, there is no direct evidence that sperm evolve faster than other male traits. Such a test requires comparing male traits that operate in the same selective environment, ideally produced from the same tissue, yet vary in function. Here, we examine rates of phenotypic evolution in sperm morphology using two insect groups where males produce fertile and non-fertile sperm types ( Drosophila species from the obscura group and a subset of Lepidoptera species), where these constraints are solved. Moreover, in Drosophila we test the relationship between rates of sperm evolution and the link with the putative selective pressures of fertilization function and postcopulatory sexual selection exerted by female reproductive organs. We find repeated evolutionary patterns across these insect groups—lengths of fertile sperm evolve faster than non-fertile sperm. In Droso...
Neotropical Entomology, 2013
In this work, we investigated the morphological variation of the intromittent male copulatory organ (aedeagus) of specimens from natural populations of two cactophilic Drosophila species distributed in the southeast region of Brazil, Drosophila gouveai Tidon-Sklorz & Sene and Drosophila antonietae Tidon-Sklorz & Sene. It was explored how the within-species variability is arranged for both species, considering their historical and ecological features. Our results showed two distinct aedeagal morphologies for these species, and differences within species were observed only in D. gouveai as specimens could be distinguished by their population origin. In contrast, after size discrepancies correction, this feature was not detected in D. antonietae. The contrasting patterns of intraspecific variation, together with the other features exhibited by these two species, are most likely to be explained by differences in the historical host plant association and distribution and in demographic events, which determined the evolutionary history of these two South American cactophilic Drosophila species.
Adaptive trait evolution in random environment
Journal of Applied Statistics, 2016
Current phylogenetic comparative methods generally employ the Ornstein-Uhlenbeck(OU) process for modeling trait evolution. Being able of tracking the optimum of a trait within a group of related species, the OU process provides information about the stabilizing selection where the population mean adopts a particular trait value. The optima of a trait may follow certain stochastic dynamics along the evolutionary history. In this paper, we extend the current framework by adopting a rate of evolution which behave according to pertinent stochastic dynamics. The novel model is applied to analyze about 225 datasets collected from the existing literature. Results validate that the new framework provides a better fit for the majority of these datasets.
Plos One, 2013
Background: Phylogenetic comparative methods (PCMs) have been applied widely in analyzing data from related species but their fit to data is rarely assessed. Question: Can one determine whether any particular comparative method is typically more appropriate than others by examining comparative data sets? Data: I conducted a meta-analysis of 122 phylogenetic data sets found by searching all papers in JEB, Blackwell Synergy and JSTOR published in 2002-2005 for the purpose of assessing the fit of PCMs. The number of species in these data sets ranged from 9 to 117. Analysis Method: I used the Akaike information criterion to compare PCMs, and then fit PCMs to bivariate data sets through REML analysis. Correlation estimates between two traits and bootstrapped confidence intervals of correlations from each model were also compared. Conclusions: For phylogenies of less than one hundred taxa, the Independent Contrast method and the independent, nonphylogenetic models provide the best fit.For bivariate analysis, correlations from different PCMs are qualitatively similar so that actual correlations from real data seem to be robust to the PCM chosen for the analysis. Therefore, researchers might apply the PCM they believe best describes the evolutionary mechanisms underlying their data.
Genome size diversity in the family Drosophilidae
Heredity, 2008
Flies in the genus Drosophila have been the dominant model organisms in genetics for over a century and, with a dozen complete sequences now available, continue as such in modern comparative genomics. Surprisingly, estimates of genome size for this genus have been relatively sparse, covering less than 2% of species. Here, best practice flow cytometric genome size estimates are reported for both male and female flies from 67 species from six genera in the family Drosophilidae, including 55 species from the genus Drosophila. Direct and phylogenetically corrected correlation analyses indicate that genome size is positively correlated with temperature-controlled duration of development in Drosophila, and there is indication that genome size may be positively related to body size and sperm length in this genus. These findings may provide some explanation for the streamlined genomes found in these insects, and complement recent work demonstrating possible selective constraints on further deletion of noncoding DNA.
Related papers
Correlates of sexual dimorphism for dry weight and development time in five species of Drosophila
Journal of Zoology, 2004
Pre-adult development time, dry weight at eclosion, and daily fecundity over the first 10 days of adult life were measured in five species of Drosophila from the melanogaster and immigrans species groups. Overall, the three species of the melanogaster group (D. melanogaster, D. ananassae, D. malerkotliana) developed faster, were lighter at eclosion, and produced more eggs per unit weight at eclosion than the two species of the immigrans group (D. n. nasuta, D. sulfurigaster neonasuta). The degree of sexual dimorphism in dry weight was greater than that in development time, but did not vary significantly among species, and was not correlated with fecundity, contrary to expectations that sexual selection for increased fecundity drives sexual size dimorphism in Drosophila. The degree of dimorphism in development time was significantly correlated with dry weight and fecundity, with lighter species tending to be more dimorphic for development time as well as more fecund, both in absolute terms and in terms of fecundity per unit weight. The results suggest that our understanding of the evolutionary forces maintaining sexual size dimorphism in Drosophila will probably benefit from more detailed studies on the correlates of sexual dimorphism within and among Drosophila species, and on the shape of reaction norms for the degree of sexual dimorphism across different levels of ecologically relevant environmental variables.
1986
Sexual dimorphism in genetic parameters is examined for wing dimensions of Drosophila melanogaster. Data are fit to a quantitative genetic model where phenotypic variance is a linear function of additive genetic autosomal variance (common to both sexes), additive genetic X-linked variances distinct for each sex, variance due to common rearing environment of families, residual environmental variance, random error variance due to replication, and variance due to measurement error and developmental asymmetry (left us. right sides). Polygenic dosage compensation and its effect on genetic variances and covariances between sexes is discussed. Variance estimates for wing length and other wing dimensions highly correlated with length support the hypothesis that the Drosophila system of dosage compensation will cause male X-linked genetic variance to be substantially larger than female X-linked variance. Results for various wing dimensions differ, suggesting that the level of dosage compensation may differ for different traits. Genetic correlations between sexes for the same trait are presented. Total additive genetic correlations are near unity for most wing traits; this indicates that selection in the same direction in both sexes would have a minor effect on changing the magnitude of difference between sexes. Additive X-linked correlations suggest some genotype X sex interactions for X-linked effects.
A study of the genetic basis of the sexual dimorphism for wing length in Drosophila melanogaster
Genetics, 1972
The genetic basis of a sexually dimorphic quantitative character in Drosophila melanogaster was investigated by means of two-way directional selection for increased and decreased differences between male and female wing length. The sex dimorphism (SD), defined as the mean wing length difference between the sexes, within families, provided the criterion for selection.-The two lines (High SD, Low SD) diverged rapidly during the 15 generations of selection, indicating the presence of extensive genetic variability for the genotype-sex interaction underlying the observed sexual dimorphism. There was evidence that genetic variability persisted in both lines when selection was relaxed. Most of the divergence between the two lines remained after 10 generations of relaxed selection.-The change in the level of sex dimorphism in the High line was due primarily to a decrease in male wing length; in the Low line most of the change in SD was the result of a decrease in female wing length. An over...
Developmental constraints and wing shape variation in natural populations of Drosophila melanogaster
Heredity, 1997
The body sizes and shapes of poikilothermic animals generally show clinal variation with latitude. Among the environmental factors responsible for the dine, temperature seems to be the most probable candidate. In the present work we analysed natural populations of Drosophila melanogaster collected at different geographical localities to determine whether the same selective forces acting on wing development in the laboratory are also at work in the wild. We show that the temperature selection acting on wing development in the laboratory is only one of the selective forces operating in the wild. The size differences between natural populations seem to depend exclusively on cell number whereas they depend on cell area in the laboratory. The two wing compartments behave as distinct units of selection subjected to different genetic control, confirming our previous observations on laboratory populations. In addition, subunits of development defined as regions of cell proliferation centres restricted within longitudinal veins can, in turn, be considered as subunits of selection. Their interaction during development and continuous natural selection around an optimum could explain the high wing shape stability generally found in natural populations.
Body size in Drosophila: genetic architecture, allometries and sexual dimorphism
Heredity, 2008
Even though substantial progress has been made to elucidate the physiological and environmental factors underpinning differences in body size, little is known about its genetic architecture. Furthermore, all animal species bear a specific relationship between the size of each organ and overall body size, so different body size traits should be investigated as well as their sexual dimorphism that may have an important impact on the evolution of body size. We have surveyed 191 co-isogenic lines of Drosophila melanogaster, each one of them homozygous for a single P-element insertion, and assessed the effects of mutations on different body size traits compared to the P-element-free co-isogenic control. Nearly 60% of the lines showed significant differences with respect to the control for these traits in one or both sexes and almost 35% showed trait-and sex-specific effects. Candidate gene mutations frequently increased body size in males and decreased it in females. Among the 92 genes identified, most are involved in development and/or metabolic processes and their molecular functions principally include protein-binding and nucleic acid-binding activities. Although several genes showed pleiotropic effects in relation to body size, few of them were involved in the expression of all traits in one or both sexes. These genes seem to be important for different aspects related to the general functioning of the organism. In general, our results indicate that the genetic architecture of body size traits involves a large fraction of the genome and is largely sex and trait specific.
Heredity, 1999
We have studied the morphology of wings of Drosophila mediopunctata employing the ellipse method, a procedure that allows precise descriptions of wing size (SI), wing shape outline (SH), and placement of longitudinal wing veins. We have found that the SH and the points which determine the position of the apices of the third, fourth and ®fth longitudinal wing veins show high heritability in nature (the lower bound for the natural heritability is above 0.25). The values found are similar to those obtained for the broad-sense heritabilities (H 2 ) in the laboratory. However, SI and the point which determines the apex of the second longitudinal wing vein showed small lower bounds for heritability in nature, 0.05 and 0.07, respectively, in spite of the high estimates of H 2 in the laboratory. These results suggest that size and shape have dierent genetic properties. We observed a high positive phenotypic correlation between the SH, the fourth and the ®fth longitudinal wing veins, which contrasts with a negative correlation between these traits and the second longitudinal vein. That is, as the SH gets longer, the apices of the second and ®fth veins become closer to each other. Positive genetic correlations in the ®eld were detected between SH, the fourth and the ®fth longitudinal veins and also between the third and the fourth veins.
Heredity, 2000
Two models of evolutionary change invoke either additive genetic contributions to phenotypic traits (Fisher) or epistatic as well as additive eects (Wright). An earlier study of the ¯ower-breeding Drosophila hibisci from two sites in eastern Australia reported additive and epistatic genetic eects as well as environmental eects on ovariole number. The present study of the same ¯ies examines the genetic architecture of wing width, a trait that is correlated phenotypically with ovariole number and body size. A generation means analysis of ¯ies reared at 25°C indicated additive and epistatic genetic eects, but no consistent maternal eects, whereas for ¯ies reared at three temperatures (18°C, 21.5°C, and 25°C) linear and nonlinear environmental eects interacted with additive genetic eects. The genetic correlation matrix for ovariole number and wing width suggested negative genetic correlations between additive eects on one trait and epistatic eects on the other. Both traits provide evidence of genetic eects consistent with assumptions of Wright's shifting balance theory of evolution.
BMC Developmental Biology, 2011
Background The Drosophila wing represents a particularly appropriate model to investigate the developmental control of phenotypic variation. Previous studies which aimed to identify candidate genes for wing morphology demonstrated that the genetic basis of wing shape variation in D. melanogaster is composed of numerous genetic factors causing small, additive effects. In this study, we analyzed wing shape in males and females from 191 lines of D. melanogaster, homozygous for a single P-element insertion, using geometric morphometrics techniques. The analysis allowed us to identify known and novel candidate genes that may contribute to the expression of wing shape in each sex separately and to compare them to candidate genes affecting wing size which have been identified previously using the same lines. Results Our results indicate that more than 63% of induced mutations affected wing shape in one or both sexes, although only 33% showed significant differences in both males and female...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.