Serum-induced macrophage activation is related to the severity of septic shock (original) (raw)

Downregulation of proinflammatory cytokine release in whole blood from septic patients

Blood, 1995

Using animal models or healthy volunteers, injection of lipopolysaccharide (LPS) or bacteria causes activation of macrophages with excessive synthesis and secretion of proinflammatory cytokines. Although these models mimic the effects of LPS in the host, they may represent more of an experimental expression of endotoxemia than natural infection itself. Therefore, as an ex vivo model of sepsis, whole blood from 15 patients with severe sepsis and 20 control patients without infection was stimulated with LPS to study the kinetics of mRNA expression and release of proinflammatory cytokines, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1 beta, and IL-6. Stimulation of whole blood with 1 microgram/mL LPS resulted in a maximum increase of cytokine secretion in the control group, while a marked (P < .01) depression of TNF-alpha, IL-1 beta, and IL-6 release was observed in the septic group, which persisted up to 10 days after study enrollment. While IL-1 beta mRNA expression was si...

Sepsis with liver dysfunction and coagulopathy predicts an inflammatory pattern of macrophage activation

Intensive Care Medicine Experimental

BackgroundInterleukin-1 receptor antagonists can reduce mortality in septic shock patients with hepatobiliary dysfunction and disseminated intravascular coagulation (HBD + DIC), an organ failure pattern with inflammatory features consistent with macrophage activation. Identification of clinical phenotypes in sepsis may allow for improved care. We aim to describe the occurrence of HBD + DIC in a contemporary cohort of patients with sepsis and determine the association of this phenotype with known macrophage activation syndrome (MAS) biomarkers and mortality. We performed a retrospective nested case–control study in adult septic shock patients with concurrent HBD + DIC and an equal number of age-matched controls, with comparative analyses of all-cause mortality and circulating biomarkers between the groups. Multiple logistic regression explored the effect of HBD + DIC on mortality and the discriminatory power of the measured biomarkers for HBD + DIC and mortality.ResultsSix percent of...

Proinflammatory versus anti-inflammatory response in sepsis patients: looking at the cytokines

Critical Care, 2014

Introduction: During the course of systemic inflammation, most of the immune cell types get activated to a certain degree as part of, or contributing to, the cascade of physiopathological events. Whether for some cells, classically phagocytes of the innate immune system, it is clear that direct sensing of pathogen-associated molecular patterns leads to activation initiating systemic inflammation, the picture is not so clear for natural killer (NK) cells. While NK cells have been shown to express toll-like receptors (TLR), the role of these receptors on NKs during systemic inflammation has not been directly addressed. Methods: To directly assess the role of TLR expression on NK cells we used an adoptive transfer model in which NKs purified from the spleens of WT, TLR4KO and TLR2/4DKO mice were transferred intravenously to RAG2 -/γc -/-(devoid of T, B and NK cells). Five days after reconstitution the mice were challenged intraperitoneally with conventional or TLR-grade lipopolysaccharide (LPS). Immune cell activation and production of IFNγ by NK cells was determined after 6 hours by FACS analysis. Results: We observed no differences in reconstitution of the recipient mice with NK cells from different backgrounds suggesting no difference in trafficking and survival of the transferred cells. At 6 hours after LPS challenge, WT, TLR4KO or TLR2/4DKO NK cells recovered from the spleen and lungs of RAG2 -/γc -/mice showed comparable levels of CD69 activation marker expression. Intracellular labeling for IFNγ in NK cells also revealed no significant differences. Conclusion: Whether there is a role for direct TLR signaling on NK cells remains the objective of further investigations; however, our data show that in the course of a systemic inflammatory process, like endotoxinemia, the expression of TLR2 and TLR4 by NK cells makes no difference in terms of their activation and secretion of IFNγ

A Comparison Between 1 Day versus 7 Days of Sepsis in Mice with the Experiments on LPS-Activated Macrophages Support the Use of Intravenous Immunoglobulin for Sepsis Attenuation

Journal of Inflammation Research

Background: Because survival and death after sepsis are partly due to a proper immune adaptation and immune dysregulation, respectively, survivors and moribund mice after cecal ligation and puncture (CLP) sepsis surgery and in vitro macrophage experiments were explored. Methods: Characteristics of mice at 1-day and 7-days post-CLP, the representative of moribund mice (an innate immune hyper-responsiveness) and survivors (a successful control on innate immunity), respectively. In parallel, soluble heat aggregated immunoglobulin (sHA-Ig), a representative of immune complex, was tested in lipopolysaccharide (LPS)activated macrophages together with a test of intravenous immunoglobulin (IVIG), a molecule of adaptive immunity, on CLP sepsis mice. Results: Except for a slight increase in alanine transaminase (liver injury), IL-10, endotoxemia, and gut leakage (FITC-dextran assay), most of the parameters in survivors (7-days post-CLP) were normalized, with enhanced adaptive immunity, including serum immunoglobulin (using serum protein electrophoresis) and activated immune cells in spleens (flow cytometry analysis). The addition of sHA-Ig in LPS-activated macrophages reduced supernatant cytokines, cell energy (extracellular flux analysis), reactive oxygen species (ROS), several cell activities (proteomic analysis), and Fc gamma receptors (FcgRs) expression. The loss of anti-inflammatory effect of sHA-Ig in LPS-activated macrophages from mice with a deficiency on Fc gamma receptor IIb (FcgRIIb-/-), the only inhibitory signaling of FcgRs family, when compared with wild-type macrophages, implying the FcgRIIb-dependent mechanism. Moreover, IVIG attenuated sepsis severity in CLP mice as evaluated by serum creatinine, liver enzyme (alanine transaminase), serum cytokines, spleen apoptosis, and abundance of dendritic cells in the spleen (24-h post-CLP) and survival analysis. Conclusion: Immunoglobulin attenuated LPS-activated macrophages, partly, through the reduced cell energy of macrophages and might play a role in sepsis immune hyperresponsiveness. Despite the debate over IVIG's use in sepsis, IVIG might be beneficial in sepsis with certain conditions.

THE OCCURRENCE OF SEVERE SEPSIS AND SEPTIC SHOCK ARE RELATED TO DISTINCT PATTERNS OF CYTOKINE GENE EXPRESSION

Shock, 2006

Patient response to acute bacterial infection is highly variable. Differing outcomes in this setting may be related to variations in the immune response to an infectious insult. Using quantitative real-time polymerase chain reaction, we quantified gene expression of the tumor necrosis factor !(TNF!), interferon + (IFN+), and interleukin 10 (IL10), IL12p35, and IL4 genes in 3 patient groups. These groups consisted of an intensive care unit (ICU) cohort who presented with severe sepsis or septic shock, a group of noncritically ill ward patients with documented Gram-negative bacteremia, and a group of healthy controls. Greater interleukin 10 messenger RNA (mRNA) levels were detected in the ICU group in comparison with both the bacteremic and control groups (P G 0.0001). More TNF-! mRNA was detected in the ICU group when compared with the control group (P G 0.0001). However, TNF-! mRNA was most abundant in the bacteremic group (P = 0.0007). Lesser IFN-+ mRNA levels were detected in the ICU group when compared with both the bacteremic and control groups (P G 0.0003). Cytokine mRNA levels were not associated with the occurrence of shock upon admission to ICU. On the seventh day of ICU stay, the presence of shock was associated with lesser IFN-+ mRNA (P = 0.0004) and lesser TNF-! mRNA (P = 0.001). Survivors had greater TNF-! mRNA copy numbers on day 7 of ICU stay than nonsurvivors (P = 0.002). We conclude that a proinflammatory response is the appropriate response in the setting of infection and is associated with lesser requirements for inotropes and lesser mortality. Quantitative real-time polymerase chain reaction can be used to predict infection outcome in clinically relevant situations where enzyme-linked immunosorbent assay testing has proved disappointing.

Macrophage activation-like syndrome: an immunological entity associated with rapid progression to death in sepsis

BMC Medicine

Background: A subanalysis of a randomized clinical trial indicated sepsis survival benefit from interleukin (IL)-1 blockade in patients with features of the macrophage activation-like syndrome (MALS). This study aimed to investigate the frequency of MALS and to develop a biomarker of diagnosis and prognosis. Methods: Patients with infections and systemic inflammatory response syndrome were assigned to one test cohort (n = 3417) and a validation cohort (n = 1704). MALS was diagnosed for patients scoring positive either for the hemophagocytic syndrome score and/or having both hepatobiliary dysfunction and disseminated intravascular coagulation. Logistic regression analysis was used to estimate the predictive value of MALS for 10-day mortality in both cohorts. Ferritin, sCD163, IL-6, IL-10, IL-18, interferon gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α) were measured in the blood the first 24 h; ferritin measurements were repeated in 747 patients on day 3. Results: The frequency of MALS was 3.7% and 4.3% in the test and the validation cohort, respectively. In both cohorts, MALS was an independent risk factor for 10-day mortality. A ferritin level above 4420 ng/ml was accompanied by 66.7% and 66% mortality after 28 days, respectively. Ferritin levels above 4420 ng/ml were associated with an increase of IL-6, IL-18, INF-γ, and sCD163 and a decreased IL-10/TNF-α ratio, indicating predominance of pro-inflammatory phenomena. Any less than 15% decrease of ferritin on day 3 was associated with more than 90% sensitivity for unfavorable outcome after 10 days. This high mortality risk was also validated in an independent Swedish cohort (n = 109). Conclusions: MALS is an independent life-threatening entity in sepsis. Ferritin measurements can provide early diagnosis of MALS and may allow for specific treatment.

Effects of endotoxic shock in several functions of murine peritoneal macrophages

Molecular and Cellular Biochemistry, 1998

Gram negative sepsis and septic shock continue to be a major medical problem, with a complex physiopathology and it is associated with high mortality. Although secretion of cytokines such as tumor necrosis factor-alpha by macrophages is the principal host mediator of septic shock, other characteristic functions of macrophages implicated in their phagocytic capacity have not been studied in the process

Critical advances in septicemia and septic shock

Critical care (London, England), 2000

Recent advances suggest that toll-like receptors, various cytokines, cicosanoids, free radicals and macrophage migration inhibitory factor (MIF) play an important role in the pathobiology of septicemia and septic shock. Anti-MIF antibodies can decrease the plasma concentrations of tumor necrosis factor (TNF), lower bacterial circulating counts and enhance survival of animals with septicemia and septic shock. Monocyte expression of MHC-class II antigens, neutrophil expression of the integrin CD11b/CD18 and neutrophil activation can be related to the development of, and/or recovery from, post-operative sepsis. Thus, biological variations in the response of an individual to a given stimulus, appears to determine his/her ability or inability to develop and also recover from sepsis and septic shock. This suggests that it may be possible to predict the development of septicemia and septic shock in a given individual and take appropriate action both to prevent and treat them adequately.