Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination (original) (raw)

Why ruminators won't stop: The structural and resting state correlates of rumination and its relation to depression

Journal of Affective Disorders, 2012

Background: Rumination is a good predictor of major depression. The current study explores the structural and functional neural correlates of rumination. Methods: To explore structural correlates of rumination (RRS, Treynor et al., 2003) we used voxelbased morphometry. We relate these correlates of rumination to concurrence of grey matter reductions in depressed patients by means of a quantitative meta-analysis on 16 VBM studies. Resting state data was used to compute maps of the amplitude of low frequency fluctuations. Results: Rumination correlated negatively with grey matter volume in bilateral inferior frontal gyrus (IFG), left anterior cingulate cortex (ACC), and bilateral mid cingulate cortex. The volume reductions were within proximity of grey matter reductions identified in the meta-analysis on depressed patients in bilateral IFG and ACC. Moreover reductions in resting state activity were overlapping with volume reductions correlated with rumination in ACC and right IFG. Limitations: The participants were all healthy control subjects. Future research is needed to explore the neural correlates of rumination in major depression.

Ruminative reflection is associated with anticorrelations between the orbitofrontal cortex and the default mode network in depression: implications for repetitive transcranial magnetic stimulation

Brain Imaging and Behavior

Patients with depression who ruminate repeatedly focus on depressive thoughts; however, there are two cognitive subtypes of rumination, reflection and brooding, each associated with different prognoses. Reflection involves problem-solving and is associated with positive outcomes, whereas brooding involves passive, negative, comparison with other people and is associated with poor outcomes. Rumination has also been related to atypical functional hyperconnectivity between the default mode network and subgenual prefrontal cortex. Repetitive pulse transcranial magnetic stimulation of the prefrontal cortex has been shown to alter functional connectivity, suggesting that the abnormal connectivity associated with rumination could potentially be altered. This study examined potential repetitive pulse transcranial magnetic stimulation prefrontal cortical targets that could modulate one or both of these rumination subtypes. Forty-three patients who took part in a trial of repetitive pulse tra...

Does resting-state connectivity reflect depressive rumination? A tale of two analyses

NeuroImage, 2014

Major Depressive Disorder (MDD) is characterized by rumination. Prior research suggests that resting-state brain activation reflects rumination when depressed individuals are not task engaged. However, no study has directly tested this. Here we investigated whether resting-state epochs differ from induced ruminative states for healthy and depressed individuals. Most previous research on resting-state networks comes from seed-based analyses with the posterior cingulate cortex (PCC). By contrast, we examined resting state connectivity by using the complete multivariate connectivity profile (i.e., connections across all brain nodes) and by comparing these results to seeded analyses. We find that unconstrained resting-state intervals differ from active rumination states in strength of connectivity and that overall connectivity was higher for healthy vs. depressed individuals. Relationships between connectivity and subjective mood (i.e., behavior) were strongly observed during induced ru...

Self-Referential Processing, Rumination, and Cortical Midline Structures in Major Depression

Frontiers in Human Neuroscience, 2013

Major depression is associated with a bias toward negative emotional processing and increased self-focus, i.e., the process by which one engages in self-referential processing. The increased self-focus in depression is suggested to be of a persistent, repetitive and self-critical nature, and is conceptualized as ruminative brooding. The role of the medial prefrontal cortex in self-referential processing has been previously emphasized in acute major depression. There is increasing evidence that self-referential processing as well as the cortical midline structures play a major role in the development, course, and treatment response of major depressive disorder. However, the links between self-referential processing, rumination, and the cortical midline structures in depression are still poorly understood. Here, we reviewed brain imaging studies in depressed patients and healthy subjects that have examined these links. Self-referential processing in major depression seems associated with abnormally increased activity of the anterior cortical midline structures. Abnormal interactions between the lateralized task-positive network, and the midline cortical structures of the default mode network, as well as the emotional response network, may underlie the pervasiveness of ruminative brooding. Furthermore, targeting this maladaptive form of rumination and its underlying neural correlates may be key for effective treatment.

Neural correlates of rumination in adolescents with remitted major depressive disorder and healthy controls

Cognitive, affective & behavioral neuroscience, 2017

The aim of the present study was to use fMRI to examine the neural correlates of engaging in rumination among a sample of remitted depressed adolescents, a population at high risk for future depressive relapse. A rumination induction task was used to assess differences in the patterns of neural activation during rumination versus a distraction condition among 26 adolescents in remission from major depressive disorder (rMDD) and in 15 healthy control adolescents. Self-report depression and rumination, as well as clinician-rated depression, were also assessed among all participants. All of the participants recruited regions in the default mode network (DMN), including the posterior cingulate cortex, medial prefrontal cortex, inferior parietal lobe, and medial temporal gyrus, during rumination. Increased activation in these regions during rumination was correlated with increased self-report rumination and symptoms of depression across all participants. Adolescents with rMDD also exhibi...

Neural substrates of rumination tendency in non-depressed individuals

Biological psychology, 2014

The tendency to ruminate, experienced by both healthy individuals and depressed patients, can be quantified by the Ruminative Response Scale (RRS). We hypothesized that brain activity associated with rumination tendency might not only occur at rest but also persist to some degree during a cognitive task. We correlated RRS with whole-brain fMRI data of 20 healthy subjects during rest and during a face categorization task with different levels of cognitive demands (easy or difficult conditions). Our results reveal that the more subjects tend to ruminate, the more they activate the left entorhinal region, both at rest and during the easy task condition, under low attentional demands. Conversely, lower tendency to ruminate correlates with greater activation of visual cortex during rest and activation of insula during the easy task condition. These results indicate a particular neural marker of the tendency to ruminate, corresponding to increased spontaneous activity in memory-related ar...

Abnormal frontoinsular-default network dynamics in adolescent depression and rumination: a preliminary resting-state co-activation pattern analysis

Neuropsychopharmacology

Clinical depression commonly emerges in adolescence, which is also a time of developing cognitive ability and related large-scale functional brain networks implicated in depression. In depressed adults, abnormalities in the dynamic functioning of frontoinsular networks, in particular, have been observed and linked to negative rumination. Thus, network dynamics may provide new insight into teen pathophysiology. Here, adolescents (n = 45, ages 13-19) with varying severity of depressive symptoms completed a resting-state functional MRI scan. Functional networks were evaluated using co-activation pattern analysis to identify whole-brain states of spatial co-activation that recurred across participants and time. Measures included: dwell time (proportion of scan spent in that network state), persistence (volume-to-volume maintenance of a network state), and transitions (frequency of moving from state A to state B). Analyses tested associations between depression or trait rumination and dynamics of network states involving frontoinsular and default network systems. Results indicated that adolescents showing increased dwell time in, and persistence of, a frontoinsular-default network state involving insula, dorsolateral and medial prefrontal cortex, and posterior regions of default network, reported more severe symptoms of depression. Further, adolescents who transitioned more frequently between the frontoinsular-default state and a prototypical default network state reported higher depression. Increased dominance and transition frequency of frontoinsular-default network states were also associated with higher rumination, and rumination mediated the associations between network dynamics and depression. Findings support a model in which abnormal frontoinsular dynamics confer vulnerability to maladaptive introspection, which in turn contributes to symptoms of adolescent depression.

Possible involvement of rumination in gray matter abnormalities in persistent symptoms of major depression: an exploratory magnetic resonance imaging voxel-based morphometry study

Journal of affective disorders, 2014

A recent meta-analysis of many magnetic resonance imaging (MRI) studies has identified brain regions with gray matter (GM) abnormalities in patients with major depressive disorder (MDD). A few studies addressing GM abnormalities in patients with treatment-resistant depression (TRD) have yielded inconsistent results. Moreover, although TRD patients tend to exhibit ruminative thoughts, it remains unclear whether rumination is related to GM abnormalities in such patients or not. We conducted structural MRI scans and voxel-based morphometry (VBM) to identify GM differences among 29 TRD patients and 29 healthy age-matched and sex-matched controls. A response style questionnaire was used to assess the respective degrees of rumination in TRD patients. Structural correlates of rumination were examined. TRD patients showed several regions with smaller GM volume than in healthy subjects: the left dorsal anterior cingulate cortex (ACC), right ventral ACC, right superior frontal gyrus, right ce...

Depression, rumination and the default network

Social Cognitive and Affective Neuroscience, 2011

Major depressive disorder (MDD) has been characterized by excessive default-network activation and connectivity with the subgenual cingulate. These hyper-connectivities are often interpreted as reflecting rumination, where MDDs perseverate on negative, self-referential thoughts. However, the relationship between connectivity and rumination has not been established. Furthermore, previous research has not examined how connectivity with the subgenual cingulate differs when individuals are engaged in a task or not. The purpose of the present study was to examine connectivity of the default network specifically in the subgenual cingulate both on-and off-task, and to examine the relationship between connectivity and rumination. Analyses using a seed-based connectivity approach revealed that MDDs show more neural functional connectivity between the posterior-cingulate cortex and the subgenual-cingulate cortex than healthy individuals during rest periods, but not during task engagement. Importantly, these rest-period connectivities correlated with behavioral measures of rumination and brooding, but not reflection.