Theoretical Study of Catalytic Efficiency of a Diels–Alderase Catalytic Antibody: An Indirect Effect Produced During the Maturation Process (original) (raw)

Abstract

sparkles

AI

The Diels-Alder reaction is one of the most important transformations in organic chemistry. This paper investigates the catalytic efficiency of a germline catalytic antibody and its matured form using a theoretical approach based on a hybrid quantum-mechanics/molecular-mechanics framework. The findings reveal that structural changes during the maturation process lead to a significant reduction in activation barriers, culminating in a fourfold increase in the catalytic rate constant due to specific mutations that enhance protein-substrate interactions.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (34)

  1. der reactions • energy calculations • mutatgenesis • quantum mechanics/ molecular mechanics
  2. Dr. S. Martí, Prof. J. AndrØs, Dr. V. Moliner Departament de Química Física i Analítica Universitat Jaume I, 12071 Castellón, (Spain) Fax: (+ 34) 964-728-066 E-mail: moliner@uji.es
  3. Prof. E. Silla, Dr. I. TuÇón Departament de Química Física Universidad de Valencia 46100 Burjasot (Spain) Fax: (+ 34)963-544-564 E-mail: Ignacio.Tunon@uv.es
  4. Prof. J. Bertrµn Departament de Química Universitat Autònoma de Barcelona 08193 Bellaterra (Spain) Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author.
  5. S. Laschat, Angew. Chem. 1996, 108, 313 -315; Angew. Chem. Int. Ed. Engl. 1996, 35, 289 -291.
  6. K. Katayama, T. Kobayashi, H. Oikawa, M. Honma, A. Ichihara, Biochim. Biophys. Acta 1998, 1384, 387 -395.
  7. E. M. Stocking, R. M. Williams, Angew. Chem. 2003, 115, 3186 - 3223; Angew. Chem. Int. Ed. 2003, 42, 3078 -3115.
  8. T. Ose, K. Watanabe, T. Mie, M. Honma, H. Watanabe, M. Yao, H. Oikawa, I. Tanaka, Nature 2003, 422, 185 -189.
  9. G. Pohnert, ChemBioChem 2001, 2, 873 -875.
  10. S. P. Kim, A. G. Leach, K. N. Houk, J. Org. Chem. 2002, 67, 4250 - 4260.
  11. Figure 3. Ribbon superposition of the variable regions of the germline (light gray) and the 39 A-11 (black) obtained at the TSs. The black liquo- rice substrate moieties correspond to the 39 A-11, whereas the light gray structure belongs to the germline.
  12. C. R. W. Guimaraes, U. Udier-Blagovic, W. L. Jorgensen, J. Am. Chem. Soc. 2005, 127, 3577 -3588.
  13. M. I. Page, W. P. Jenks, Proc. Natl. Acad. Sci. USA 1971, 68, 1678 - 1683.
  14. F. H. Westheimer, Adv. Phys. Org. Chem. 1985, 21, 1 -35.
  15. D. Hilvert, K. W. Hill, K. D. Nared, M. T. M. Auditor, J. Am. Chem. Soc. 1989, 111, 9261 -9262.
  16. A. Braisted, P. G. Schultz, J. Am. Chem. Soc. 1990, 112, 7430 -7431.
  17. F. E. Romesberg, B. Spiller, P. G. Schultz, R. C. Stevens, Science 1998, 279, 1929 -1933.
  18. F. E. Romesberg, P. G. Schultz, Bioorg. Med. Chem. Lett. 1999, 9, 1741 -1744.
  19. S. Martí, M. Roca, J. AndrØs, V. Moliner, E. Silla, I. TuÇón, Bertrµn, J. Chem. Soc. Rev. 2004, 33, 98 -107.
  20. S. Martí, J. AndrØs, V. Moliner, E. Silla, I. TuÇón, J. Bertrµn, Angew. Chem. 2005, 117, 926 -931; Angew. Chem. Int. Ed. 2005, 44, 904 - 909.
  21. S. Martí, J. AndrØs, V. Moliner, E. Silla, I. TuÇón, J. Bertrµn, Angew. Chem. 2007, 119, 290 -294; Angew. Chem. Int. Ed. 2007, 46, 286 - 290.
  22. M. K. Gilson, Proteins Struct. Funct. Genet. 1993, 15, 266 -282.
  23. J. Antosiewicz, J. A. McCammon, M. K. Gilson, J. Mol. Biol. 1994, 238, 415 -436.
  24. M. J. Field, P. Amara, L. David, D. Rinaldo, personal communica- tion.
  25. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902 -3909.
  26. W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 1996, 118, 11225 -11236.
  27. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926 -935.
  28. S. Martí, V. Moliner, I. TuÇón, J. Chem. Theory Comput. 2005, 1, 1008 -1016.
  29. J. Baker, J. Comput. Chem. 1986, 7, 385 -395.
  30. Y. Zhang, H. Liu, W. Yang, J. Chem. Phys., 2000, 112, 3483 -3492.
  31. S. Ferrer, I. TuÇón, S. Martí, V. Moliner, M. Garcia-Viloca, A. Gon- zµlez-Lafont, J. M. Lluch, J. Am. Chem. Soc. 2006, 128, 16851 - 16863.
  32. J. Kastner, H. M. Senn, S. Thiel, N. Otte, W. Thiel, J. Chem. Theory Comput. 2006, 2, 452 -461.
  33. M. J. Field, M. Albe, C. Bret, F. Proust-de Martin, A. J. Thomas, J. Comput. Chem. 2000, 21, 1088 -1100.
  34. Gaussian 03, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A., Jr., Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Re- plogle, J. A. Pople, Gaussian, Inc.; Pittsburgh PA, 2003.