Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy (original) (raw)

Abstract

sparkles

AI

Objective: To evaluate the regulation of matrix metalloproteinase (MMP)-2 in diabetic cardiomyopathy. Methods: Left ventricle (LV) function was determined by a micro-tip catheter in streptozotocin (STZ)-induced diabetic rats, analyzed over 2 or 6 weeks post-STZ. Key findings included a time-dependent decline in LV diastolic and systolic function alongside an increase in LV total collagen content; MMP-2 expression and activity were significantly reduced, correlating with elevated levels of Smad 7 and TIMP-2 and absent MT1-MMP. Conclusion: Cardiac fibrosis observed under diabetic conditions is linked to reduced MMP-2 activity and altered extracellular matrix regulation.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (45)

  1. Ahmed SH, Clark LL, Pennington WR, Webb CS, Bonnema DD, Leonardi AH, McClure CD, Spinale FG, Zile MR (2006) Matrix metalloproteinases/tis- sue inhibitors of metalloproteinases: relationship between changes in pro- teolytic determinants of matrix com- position and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation 113:2089- 2096
  2. Aimes RT, Quigley JP (1995) Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme cat- alyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4-and 1/4- length fragments. J Biol Chem 270:5872-5876
  3. Akula A, Kota MK, Gopisetty SG, Chi- trapu RV, Kalagara M, Kalagara S, Veeravalli KK, Gomedhikam JP (2003) Biochemical, histological and echocar- diographic changes during experimen- tal cardiomyopathy in STZ-induced diabetic rats. Pharmacol Res 48:429- 435
  4. Asbun J, Manso AM, Villarreal FJ (2005) Profibrotic influence of high glucose concentration on cardiac fibroblast functions: effects of losartan and vitamin E. Am J Physiol Heart Circ Physiol 288: H227-H234
  5. Bell DS (1995) Diabetic cardiomyopa- thy. A unique entity or a complication of coronary artery disease? Diabetes Care 18:708-714
  6. Berman M, Teerlink J, Li L, Mahimkar R, Zhu BQ, Nguyen A, Dahi S, Karliner J, Lovett DH (2006) Cardiac matrix metalloproteinase-2 expression inde- pendently induces marked ventricular remodeling and systolic dysfunction. Am J Physiol Heart Circ Physiol 292: H1847-H1860
  7. Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dincer UD, Besch HR Jr. (2004) Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+- ATPase. Diabetes 53:463-473
  8. Bollano E, Omerovic E, Svensson H, Waagstein F, Fu M (2006) Cardiac remodeling rather than disturbed myocardial energy metabolism is associated with cardiac dysfunction in diabetic rats. Int J Cardiol [Epub ahead of print]
  9. Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, Schade van Westrum S, Crabbe T, Clements J, d'Ortho MP, Murphy G (1998) The TIMP2 mem- brane type 1 metalloproteinase ''receptor'' regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem 273:871-880
  10. Coker ML, Zellner JL, Crumbley AJ, Spinale FG (1999) Defects in matrix metalloproteinase inhibitory stoichi- ometry and selective MMP induction in patients with nonischemic or ischemic dilated cardiomyopathy. Ann N Y Acad Sci 878:559-562
  11. Dollery CM, McEwan JR, Henney AM (1995) Matrix metalloproteinases and cardiovascular disease. Circ Res 77:863-868
  12. Han SY, Jee YH, Han KH, Kang YS, Kim HK, Han JY, Kim YS, Cha DR (2006) An imbalance between matrix metalloproteinase-2 and tissue inhibi- tor of matrix metalloproteinase-2 con- tributes to the development of early diabetic nephropathy. Nephrol Dial Transplant 21:2406-2416
  13. Hayashi T, Sohmiya K, Ukimura A, Endoh S, Mori T, Shimomura H, Okabe M, Terasaki F, Kitaura Y (2003) Angiotensin II receptor blockade pre- vents microangiopathy and preserves diastolic function in the diabetic rat heart. Heart 89:1236-1242
  14. Kuzuya M, Asai T, Kanda S, Maeda K, Cheng XW, Iguchi A (2001) Glycation cross-links inhibit matrix metallopro- teinase-2 activation in vascular smooth muscle cells cultured on collagen lat- tice. Diabetologia 44:433-436
  15. Kuzuya M, Nakamura K, Sasaki T, Cheng XW, Itohara S, Iguchi A (2006) Effect of MMP-2 deficiency on athero- sclerotic lesion formation in apoE- deficient mice. Arterioscler Thromb Vasc Biol 26:1120-1125
  16. Lee EO, Kang JL, Chong YH (2005) The amyloid-beta peptide suppresses transforming growth factor-beta1-in- duced matrix metalloproteinase-2 pro- duction via Smad7 expression in human monocytic THP-1 cells. J Biol Chem 280:7845-7853
  17. Lupia E, Elliot SJ, Lenz O, Zheng F, Hattori M, Striker GE, Striker LJ (1999) IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy. Diabetes 48:1638-1644
  18. Massague J (2000) How cells read TGF- beta signals. Nat Rev Mol Cell Biol 1:169-178
  19. Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K, Kinugawa S, Tsutsui H (2006) Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 47:711-717
  20. Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests inter- stitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446-2451
  21. Pauschinger M, Knopf D, Petschauer S, Doerner A, Poller W, Schwimmbeck PL, Kuhl U, Schultheiss HP (1999) Di- lated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99:2750- 2756
  22. Phanish MK, Wahab NA, Colville-Nash P, Hendry BM, Dockrell ME (2006) The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells. Biochem J 393:601-607
  23. Pulaski L, Landstrom M, Heldin CH, Souchelnytskyi S (2001) Phosphoryla- tion of Smad7 at Ser-249 does not interfere with its inhibitory role in transforming growth factor-beta- dependent signaling but affects Smad7- dependent transcriptional activation. J Biol Chem 276:14344-14349
  24. Rittie L, Berton A, Monboisse JC, Hornebeck W, Gillery P (1999) De- creased contraction of glycated colla- gen lattices coincides with impaired matrix metalloproteinase production. Biochem Biophys Res Commun 264:488-492
  25. Riva E, Andreoni G, Bianchi R, Latini R, Luvara G, Jeremic G, Traquandi C, Tuccinardi L (1998) Changes in dia- stolic function and collagen content in normotensive and hypertensive rats with long-term streptozotocin-induced diabetes. Pharmacol Res 37:233-240
  26. Rutschow S, Li J, Schultheiss HP, Pauschinger M (2006) Myocardial proteases and matrix remodeling in inflammatory heart disease. Cardiovasc Res 69:646-656
  27. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase ex- pressed on the surface of invasive tu- mour cells. Nature 370:61-65
  28. Schaible TF, Malhotra A, Bauman WA, Scheuer J (1983) Left ventricular func- tion after chronic insulin treatment in diabetic and normal rats. J Mol Cell Cardiol 15:445-458
  29. Seeland U, Kouchi I, Zolk O, Itter G, Linz W, Bohm M (2002) Effect of ramipril and furosemide treatment on interstitial remodeling in post-infarc- tion heart failure rat hearts. J Mol Cell Cardiol 34:151-163
  30. Seeland U, Selejan S, Engelhardt S, Muller P, Lohse MJ, Bohm M (2007) Interstitial remodeling in beta1-adren- ergic receptor transgenic mice. Basic Res Cardiol 102:183-193
  31. Shehadeh A, Regan TJ (1995) Cardiac consequences of diabetes mellitus. Clin Cardiol 18:301-305
  32. Singh R, Song RH, Alavi N, Pegoraro AA, Singh AK, Leehey DJ (2001) High glucose decreases matrix metallopro- teinase-2 activity in rat mesangial cells via transforming growth factor-beta1. Exp Nephrol 9:249-257
  33. Stanton H, Gavrilovic J, Atkinson SJ, d'Ortho MP, Yamada KM, Zardi L, Murphy G (1998) The activation of ProMMP-2 (gelatinase A) by HT1080 fibrosarcoma cells is promoted by cul- ture on a fibronectin substrate and is concomitant with an increase in pro- cessing of MT1-MMP (MMP-14) to a 45 kDa form. J Cell Sci 111(Pt 18):2789- 2798
  34. Stilli D, Lagrasta C, Berni R, Bocchi L, Savi M, Delucchi F, Graiani G, Monica M, Maestri R, Baruffi S, Rossi S, Macchi E, Musso E, Quaini F (2007) Preserva- tion of ventricular performance at early stages of diabetic cardiomyopathy in- volves changes in myocyte size, num- ber and intercellular coupling. Basic Res Cardiol 102:488-499
  35. Tack I, Elliot SJ, Potier M, Rivera A, Striker GE, Striker LJ (2002) Autocrine activation of the IGF-I signaling path- way in mesangial cells isolated from diabetic NOD mice. Diabetes 51:182- 188
  36. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ 3rd, Spinale FG (1998) Increased matrix metallopro- teinase activity and selective upregula- tion in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97:1708-1715
  37. Tschope C, Spillmann F, Rehfeld U, Koch M, Westermann D, Altmann C, Dendorfer A, Walther T, Bader M, Paul M, Schultheiss HP, Vetter R (2004) Improvement of defective sarcoplasmic reticulum Ca2+ transport in diabetic heart of transgenic rats expressing the human kallikrein-1 gene. Faseb J 18:1967-1969
  38. Tschope C, Walther T, Escher F, Spill- mann F, Du J, Altmann C, Schimke I, Bader M, Sanchez-Ferrer CF, Schul- theiss HP, Noutsias M (2005) Trans- genic activation of the kallikrein-kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardiomyopathy. Faseb J 19:2057-2059
  39. Tschope C, Walther T, Koniger J, Spillmann F, Westermann D, Escher F, Pauschinger M, Pesquero JB, Bader M, Schultheiss HP, Noutsias M (2004) Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kalli- krein gene. Faseb J 18:828-835
  40. Vinik AI, Ziegler D (2007) Diabetic cardiovascular autonomic neuropathy. Circulation 115:387-397
  41. Wang B, Hao J, Jones SC, Yee MS, Roth JC, Dixon IM (2002) Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am J Physiol Heart Circ Physiol 282:H1685- H1696
  42. Wang B, Omar A, Angelovska T, Dro- bic V, Rattan SG, Jones SC, Dixon IM (2007) Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofi- broblasts. Am J Physiol Heart Circ Physiol 293:H1282-H1290
  43. Westermann D, Rutschow S, Jager S, Linderer A, Anker S, Riad A, Unger T, Schultheiss HP, Pauschinger M, Tsc- hope C (2007) Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 56:641-646
  44. Westermann D, Van Linthout S, Dha- yat S, Dhayat N, Schmidt A, Noutsias M, Song XY, Spillmann F, Riad A, Schultheiss HP, Tschope C (2007) Tu- mor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102:500-507
  45. Wrana JL (2000) Regulation of Smad activity. Cell 100:189-192