Age-related recurrence of basal forebrain lesion-induced cholinergic deficits (original) (raw)
Related papers
Revisiting the cholinergic hypothesis in the development of Alzheimer's disease
Neuroscience & Biobehavioral Reviews, 2011
Alzheimer's disease (AD) is the most common form of dementia affecting the elderly population today; however, there is currently no accurate description of the etiology of this devastating disorder. No single factor theory has been demonstrated as being causative; however, an alternative theory suggests that the interaction of multiple risk factors is responsible for AD. In this thesis I present data suggesting a neuroprotective role for acetylcholine during aging. Using a rat model of cholinergic depletion of the medial septum, I explored the effects of four common risk factors for AD (stress, seizures, stroke and circadian dysfunction) targeted at the hippocampus and examined the effects on measures of hippocampal dependent (water maze) and hippocampal independent (fear conditioning) memory. Here, I propose a role for acetylcholinemediated compensatory mechanisms in the functional recovery observed following sub threshold insults similar to those commonly observed in the elderly. m Objective of the present thesis 25 Chapter 2: A series of pilot studies to determine the threshold for behaviourally sub threshold stroke, seizures and stress 28
A second wind for the cholinergic system in Alzheimer’s therapy
Behavioural Pharmacology
Notwithstanding tremendous research efforts, the cause of Alzheimer's disease (AD) remains elusive and there is no curative treatment. The cholinergic hypothesis presented 35 years ago was the first major evidence-based hypothesis regarding AD etiology. It proposed that the depletion of brain acetylcholine was a primary cause of cognitive decline in advanced age and AD. It relied on a series of observations obtained in aged animals, elderly and AD patients which pointed to dysfunctions of cholinergic basal forebrain, similarities between cognitive impairments induced by anticholinergic drugs and those found in advanced age and AD, and beneficial effects of drugs stimulating cholinergic activity. This review comes back on these major results to show how this hypothesis provided the drive for the development of anticholinesterase inhibitor-based therapies of AD, the almost exclusive approved treatment in use despite transient and modest efficacy. New ideas for improving cholinergic therapies are also compared and discussed in light of the current revival of the cholinergic hypothesis based on two sets of evidence from new animal models and refined imagery techniques in humans. First, human and animal studies agree on detecting signs of cholinergic dysfunctions much earlier than initially thought. Second, alterations of the cholinergic system are deeply intertwined with its reactive responses providing the brain with efficient compensatory mechanisms to delay the conversion to AD. Active research in this field should give new insight to develop multi-therapies incorporating cholinergic manipulation, as well as early biomarkers of AD allowing earlier diagnostics. This is of prime importance to counteract a disease that is now recognized to start early in adult life.
Cholinergic Fiber Aberrations in Nucleus Basalis Lesioned Rat and Alzheimer's Disease
Neurobiology of Aging, 1992
fiber aberrations in nucleus basalis lesioned rat and AIzheimer ~ disease NEU ROBIOL AGING 13(3) [441][442][443][444][445][446][447][448] 1992.--Innervation density and morphological aberrations ofcholinergic fibers were studied with choline acetyltransferase (CHAT) immunocytochemistry and acetylcholinesterase (ACHE) histochemistry in 30-35 month-old aged rats and rats with long-term bilateral lesions of the magnocellular basal nucleus (MBN). In addition, AChE histochemistry was performed on human cortical sections derived from autopsy brains of normal aged and Alzheimer's disease (AD) patients. A limited but variable number of morphological alterations were observed in ChAT-immunoreactive fibers in the cortex and the hippocampus of the aged control rats. The aged MBN-lesioned rats displayed a severely reduced number ofcholinergic fibers in the denervated areas of the neocortex, whereas the surviving fibers showed a strongly increased number of aberrations. Fiber anomalies were also observed in the cortex of the aged human subjects and Alzheimer patients, the latter showing a higher incidence of such aberrations. Only a part of these distended profiles were seen in close association with senile plaques as detected in the AChE-stained material. These findings suggest that experimental M BN lesions combined with aging share with AD the induction oflarge quantities of fiber malformations. Implications of possible mechanisms in both conditions are discussed.
The Journal Of Prevention of Alzheimer's Disease, 2018
Scientific evidence collected over the past 4 decades suggests that a loss of cholinergic innervation in the cerebral cortex of patients with Alzheimer’s disease is an early pathogenic event correlated with cognitive impairment. This evidence led to the formulation of the “Cholinergic Hypothesis of AD” and the development of cholinesterase inhibitor therapies. Although approved only as symptomatic therapies, recent studies suggest that long-term use of these drugs may also have disease-modifying benefits. A Cholinergic System Workgroup reassessed the role of the cholinergic system on AD pathogenesis in light of recent data, including neuroimaging data charting the progression of neurodegeneration in the cholinergic system and suggesting that cholinergic therapy may slow brain atrophy. Other pathways that contribute to cholinergic synaptic loss and their effect on cognitive impairment in AD were also reviewed. These studies indicate that the cholinergic system as one of several inter...
Cholinergic system during the progression of Alzheimer's disease: therapeutic implications.
Alzheimer's disease (AD) is characterized by a progressive phenotypic downregulation of markers within cholinergic basal forebrain (CBF) neurons, frank CBF cell loss and reduced cortical choline acetyltransferase activity associated with cognitive decline. Delaying CBF neurodegeneration or minimizing its consequences is the mechanism of action for most currently available drug treatments for cognitive dysfunction in AD. Growing evidence suggests that imbalances in the expression of NGF, its precursor proNGF and the high (TrkA) and low (p75(NTR)) affinity NGF receptors are crucial factors underlying CBF dysfunction in AD. Drugs that maintain a homeostatic balance between TrkA and p75(NTR) may slow the onset of AD. A NGF gene therapy trial reduced cognitive decline and stimulated cholinergic fiber growth in humans with mild AD. Drugs treating the multiple pathologies and clinical symptoms in AD (e.g., M1 cholinoceptor and/or galaninergic drugs) should be considered for a more comprehensive treatment approach for cholinergic dysfunction.
Brain Research Bulletin, 2013
Alzheimer's disease is associated with a significant decrease in the cholinergic input to the neocortex. In a rat model of this depletion, we analyzed the subsequent long-term changes in cholinergic fiber density in two well-defined areas of the frontal and parietal cortices: Fr1, the primary motor cortex, and HL, the hindlimb area of the somatosensory (parietal) cortex, two cortical cholinergic fields that receive inputs from the nucleus basalis magnocellularis (nBM). A specific cholinergic lesion was induced by the intraparenchymal injection of 192 IgG-saporin into the nBM. Choline acetyltransferase (ChAT) immunohistochemistry was applied to identify the loss of cholinergic neurons in the nBM, while acetylcholinesterase (AChE) enzyme histochemistry was used to analyze the decreases in the number of cholinoceptive neurons in the nBM and the cholinergic fiber density in the Fr1 and HL cortical areas in response to the nBM lesion. The immunotoxin differentially affected the number of ChAT-and AChE-positive neurons in the nBM. 192 IgG-saporin induced a massive, irreversible depletion of the ChAT-positive (cholinergic) neurons (to 11.7% of the control level), accompanied by a less dramatic, but similarly persistent loss of the AChE-positive (cholinoceptive) neurons (to 59.2% of the control value) in the nBM within 2 weeks after the lesion. The difference seen in the depletion of ChAT-and AChE-positive neurons is due to the specificity of the immunotoxin to cholinergic neurons. The cholinergic fiber densities in cortical areas Fr1 and HL remained similarly decreased (to 62% and 68% of the control values, respectively) up to 20 weeks. No significant rebound in AChE activity occurred either in the nBM or in the cortices during the period investigated. This study therefore demonstrated that, similarly to the very extensive reduction in the number of ChAT-positive neurons in the nBM, cortical areas Fr1 and HL underwent long-lasting reductions in the number of AChE-positive fibers in response to specific cholinergic lesioning of the nBM.
Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice
Neurobiology of Disease, 2006
In 7-month-old TgCRND8 mice, the extracellular cortical acetylcholine levels in vivo, the number and morphology of cholinergic neurons in the nucleus basalis magnocellularis and the ability to acquire an inhibitory avoidance response in the step-down test were studied. The TgCRND8 mouse brain is characterized by many B-amyloid plaques, reduced neuronal and axonal staining, white matter demyelination, glia reaction and inducible nitric oxide synthase immunoreactivity. Choline acetyltransferase immunoreactivity in the nucleus basalis magnocellularis was significantly decreased. Basal and potassium-stimulated extracellular acetylcholine levels, investigated by microdialysis, and m2 muscarinic receptor immunoreactivity were reduced in the cortex of TgCRND8 mice, and scopolamine administration increased cortical extracellular acetylcholine levels in control but not in TgCRND8 mice. A cognitive impairment was demonstrated in the step-down test. These findings demonstrate that neuronal damage and cholinergic dysfunction in vivo underlie the impairment in learning and memory functions in this mouse model of Alzheimer's disease. D
Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit
Neuroscience …, 2005
Cognitive deficits in neuropsychiatric disorders, such as Alzheimer's disease (AD), have been closely related to cholinergic deficits. We have compared different markers of cholinergic function to assess the best biomarker of cognitive deficits associated to cholinergic hypoactivity. In post-mortem frontal cortex from AD patients, acetylcholine (ACh) levels, cholinacetyltransferase (ChAT) and acetylcholinesterase (AChE) activity were all reduced compared to controls. Both ChAT and AChE activity showed a significant correlation with cognitive deficits. In the frontal cortex of rats with a selective cholinergic lesion, all cholinergic parameters measured (ACh levels, ChAT and AChE activities, "in vitro" and "in vivo" basal ACh release) were significantly reduced. AChE activity was associated to ChAT activity, and even more, to "in vivo" and "in vitro" basal ACh release. Quantification of AChE activity is performed by an easy and cheap method and therefore, these results suggest that determination of AChE activity may be used as an effective first step method to evaluate cholinergic deficits.
Neurochemical Research, 2008
The so-called ''cholinergic hypothesis'' assumes that degenerative dysfunction of the cholinergic system originating in the basal forebrain and innervating several cortical regions and the hippocampus, is related to memory impairment and neurodegeneration found in several forms of dementia and in brain aging. Biochemical methods measuring the activity of the key enzyme for acetylcholine synthesis, choline acetyltransferase, have been used for many years as a reliable marker of the integrity or the damage of the cholinergic pathways. Stereologic counting of the basal forebrain cholinergic cell bodies, has been additionally used to assess neurodegenerative changes of the forebrain cholinergic system. While initially believed to mark relatively early stages of disease, cholinergic dysfunction is at present considered to occur in advanced dementia of Alzheimer's type, while its involvement in mild and prodromal stages of the disease has been questioned. The issue is relevant to better understand the neuropathological basis of the diseases, but it is also of primary importance for therapy. During the last few years, indeed, cholinergic replacement therapies, mainly based on the use of acetylcholinesterase inhibitors to increase synaptic availability of acetylcholine, have been exploited on the assumption that they could ameliorate the progression of the dementia from its initial stages. In the present paper, we review data from human studies, as well as from animal models of Alzheimer's and Down's diseases, focusing on different ways to evaluate cholinergic dysfunction, also in relation to the time point at which these dysfunctions can be demonstrated, and on some discrepancy arising from the use of different methodological approaches. The reviewed literature, as well as some recent data from our laboratories on a mouse model of Down's syndrome, stress the importance of performing biochemical evaluation of choline acetyltransferase activity to assess cholinergic dysfunction both in humans and in animal models.