Applications of Ultrasonic Techniques in Oil and Gas Pipeline Industries: A Review (original) (raw)

The diversity of ultrasound techniques used in oil and gas pipeline plants provides us with a wealth of information on how to exploit this technology when combined with other techniques, in order to improve the quality of analysis. The fundamental theory of ultrasonic nondestructive evaluation (NDE) technology is offered, along with practical limitations as related to two factors (wave types and transducers). The focus is limited to the two main techniques used in pipe plants: First, straight beam evaluation and second, angle beam evaluation. The depth of defect (DD) is calculated using straight beam ultrasonic in six different materials according to their relative longitudinal wave (LW) velocities. The materials and respective velocities of LW are: rolled aluminum (6420 m/s), mild steel (5960 m/s), stainless steel-347 (5790 m/s), rolled copper (5010 m/s), annealed copper (4760 m/s), and brass (4700 m/s). In each material eight defects are modeled; the first represents l00% of the material thickness (D), 50.8 mm. The other seven cases represent the DD, as 87.5% of the material thickness, 75%, 62.5%, 50%, 37.5%, 25%, and 12.5%, respectively. Using angle beam evaluation, several parameters are calculated for six different reflection angles (βR) (45°, 50°, 55°, 60°, 65° and 70°). The surface distance (SD), ½skip distance (SKD), full SKD, and 1½SKD,½sound path (SP) length, full SP, and 1½ SP are calculated for each βR. The relationship of SKD and SP to the βR is graphed. A chief limitation is noted that ultrasound testing is heavily dependent on the expertise of the operator, and because the reading of the outcome is subjective, precision may be hard to achieve. This review also clarifies and discusses the options used in solving the industrial engineering problem, with a comprehensive historical summary of the information available in the literature. Merging various NDE inspection techniques into the testing of objects is discussed. Eventually, it is hoped to find a suitable technique combined with ultrasonic inspection to deliver highly effective remote testing.