Reduced virulence of Candida albicans mkc1 mutants: A role for a MAP kinase in pathogenesis (original) (raw)

A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans

Microbiology, 1998

The Candida albicans MKC1 gene encodes a mitogen-activated protein (MAP) kinase, which has been cloned by complementation of the lytic phenotype associated with Saccharomyces cerevisiae slt2 (mpk1) mutants. In this work, the physiological role of this MAP kinase in the pathogenic fungus C. albicans was characterized and a role for MKC1 in the biogenesis of the cell wall suggested based on the following criteria. First, C. albicans mkc1Δ/mkc1Δ strains displayed alterations in their cell surfaces under specific conditions as evidenced by scanning electron microscopy. Second, an increase in specific cell wall epitopes (O-glycosylated mannoprotein) was shown by confocal microscopy in mkc1Δ/mkc1Δ mutants. Third, the sensitivity to antifungals which inhibit (1,3)-β-glucan and chitin synthesis was increased in these mutants. In addition, evidence for a role for the MKC1 gene in morphological transitions in C. albicans is presented based on the impairment of pseudohyphal formation of mkc1Δ/...

The MAP kinase signal transduction network in Candida albicans

Microbiology, 2006

MAP (mitogen-activated protein) kinase-mediated pathways are key elements in sensing and transmitting the response of cells to environmental conditions by the sequential action of phosphorylation events. In the fungal pathogenCandida albicans, different routes have been identified by genetic analysis, and especially by the phenotypic characterization of mutants altered in the Mkc1, Cek1/2 and Hog1 MAP kinases. The cell integrity (orMKC1-mediated) pathway is primarily involved in the biogenesis of the cell wall. The HOG pathway participates in the response to osmotic stress while the Cek1 pathway mediates mating and filamentation. Their actual functions are, however, much broader and Mkc1 senses several types of stress, while Hog1 is also responsive to other stress conditions and participates in two morphogenetic programmes: filamentation and chlamydospore formation. Furthermore, it has been recently shown that Cek1 participates in a putative pathway involved in the construction of t...

Mitogen-activated protein kinase-defective Candida albicans is avirulent in a novel model of localized murine candidiasis

FEMS Microbiology Letters, 2000

Candida albicans strains with a deletion of the mitogen-activated protein kinase CEK1 gene are defective in the yeast to hyphal transition on solid surfaces in vitro. The virulence of a cek1v/cek1v null mutant strain was compared with its wild-type parent strain (WT) in a novel model of localized candidiasis. The mammary glands of lactating mice (at day 5 postpartum) were infected for 2, 4 and 6 days with 50 Wl suspension containing 1U10 S , 1U10 T and 1U10 U blastospores before death. Infected and non-infected control glands were evaluated pathologically. All animals infected with cek1v/cek1v null mutant strains showed no lesions while 65% of animals infected with the WT strain had severe lesions characterized by widespread heterophilic infiltration, necrosis, and abscess formation. As an additional control, animals infected with the disrupted strain complemented with the WT CEK1, on a replicating plasmid, also showed severe pathological changes similar to the WT strain. These results clearly demonstrate that the CEK1 gene codes for a virulence determinant of C. albicans and that the mouse mastitis model is well suited for the discriminative study of the pathogenicity of different C. albicans strains. z

Role of the Mitogen-Activated Protein Kinase Hog1p in Morphogenesis and Virulence of Candida albicans

Journal of Bacteriology, 1999

The relevance of the mitogen-activated protein (MAP) kinase Hog1p in Candida albicans was addressed through the characterization of C. albicans strains without a functional HOG1 gene. Analysis of the phenotype of hog1 mutants under osmostressing conditions revealed that this mutant displays a set of morphological alterations as the result of a failure to complete the final stages of cytokinesis, with parallel defects in the budding pattern. Even under permissive conditions, hog1 mutants displayed a different susceptibility to some compounds such as nikkomycin Z or Congo red, which interfere with cell wall functionality. In addition, the hog1 mutant displayed a colony morphology different from that of the wild-type strain on some media which promote morphological transitions in C. albicans. We show that C. albicans hog1 mutants are derepressed in the serum-induced hyphal formation and, consistently with this behavior, that HOG1 overexpression in Saccharomyces cerevisiae represses the pseudodimorphic transition. Most interestingly, deletion of HOG1 resulted in a drastic increase in the mean survival time of systemically infected mice, supporting a role for this MAP kinase pathway in virulence of pathogenic fungi. This finding has potential implications in antifungal therapy.

Role of the Mitogen-Activated Protein Kinase Hog1p in Morphogenesis and Virulence of Candida albicans

1999

The relevance of the mitogen-activated protein (MAP) kinase Hog1p in Candida albicans was addressed through the characterization of C. albicans strains without a functional HOG1 gene. Analysis of the phenotype of hog1 mutants under osmostressing conditions revealed that this mutant displays a set of morphological alterations as the result of a failure to complete the final stages of cytokinesis, with parallel defects in the budding pattern. Even under permissive conditions, hog1 mutants displayed a different susceptibility to some compounds such as nikkomycin Z or Congo red, which interfere with cell wall functionality. In addition, the hog1 mutant displayed a colony morphology different from that of the wild-type strain on some media which promote morphological transitions in C. albicans. We show that C. albicans hog1 mutants are derepressed in the serum-induced hyphal formation and, consistently with this behavior, that HOG1 overexpression in Saccharomyces cerevisiae represses the pseudodimorphic transition. Most interestingly, deletion of HOG1 resulted in a drastic increase in the mean survival time of systemically infected mice, supporting a role for this MAP kinase pathway in virulence of pathogenic fungi. This finding has potential implications in antifungal therapy.

The Role of MAPK Signal Transduction Pathways in the Response to Oxidative Stress in the Fungal Pathogen Candida albicans: Implications in Virulence

Current Protein & Peptide Science, 2010

In recent years, Mitogen-Activated Protein Kinase (MAPK) pathways have emerged as major regulators of cellular physiology. In the fungal pathogen Candida albicans, three different MAPK pathways have been characterized in the last years. The HOG pathway is mainly a stress response pathway that is activated in response to osmotic and oxidative stress and also participates regulating other pathways. The SVG pathway (or mediated by the Cek1 MAPK) is involved in cell wall formation under vegetative and filamentous growth, while the Mkc1-mediated pathway is involved in cell wall integrity. Oxidative stress is one of the types of stress that every fungal cell has to face during colonization of the host, where the cell encounters both hypoxia niches (i.e. gut) and high concentrations of reactive oxygen species (upon challenge with immune cells). Two pathways have been shown to be activated in response to oxidative stress: the HOG pathway and the Mkc1-mediated pathway while the third, the Cek1 pathway is deactivated. The timing, kinetics, stimuli and functional responses generated upon oxidative stress differ among them; however, they have essential functional consequences that severely influence pathogenesis. MAPK pathways are, therefore, valuable targets to be explored in antifungal research.

The CEK1-mediated mitogen-activated protein kinase pathway in the fungal pathogen Candida albicans

MAP Kinase, 2013

Mitogen-activated protein kinases (MAPK) mediated signal transduction pathways are essential for the adaptation of living organisms to environmental changes. In pathogenic fungi, these MAPK cascades govern the response to many types of situations, and are essential for the successful establishment of the fungus within the host. Therefore, they influence virulence and can be considered as promising therapeutic targets. In the opportunistic pathogen Candida albicans, the Cek1mediated pathway was identified long time ago as an important virulence determinant in certain animal models. We will review here the recent work that reveals the role that this route plays in three important processes for the cell: osmotic adaptation, fungal morphogenesis and cell wall remodeling. We will also show the complementary (and sometimes opposite) roles that under specific circumstances the high osmolarity glycerol and CEK1 pathways play in C. albicans biology, especially in the context of the interaction with the mammalian host.

Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans

Cellular Microbiology, 2007

The role of four mitogen-activated protein (MAP) kinase pathways in the survival of Candida albicans following infection of human phagocytes has been addressed through the analysis of mutants defective in their respective MAP kinase. While the contribution of the cell integrity (Mkc1-mediated) or mating (Cek2mediated) pathways is relatively minor to survival, clear and opposite effects were observed for cek1 and hog1 mutants, despite the fact that these two MAP kinases are important virulence determinants in the mouse model of experimental infection. The Cek1mediated pathway is involved in sensitivity to phagocyte-mediated killing, while the HOG pathway contributes to the survival of the fungal cells in this interaction. Furthermore, reporter genes have been developed to quantify oxidative and nitrosative stress. hog1 mutants show an oxidative and nitrosative stress response augmented-albeit nonprotective-when challenged with oxidants and NO donors in vitro or phagocytic cells (macrophages, neutrophils and the myelomonocytic cell line HL-60), suggesting this as the cause of their reduced virulence in the murine model of infection. These data have important consequences for the development of novel antifungal therapies to combat against fungal infection.

Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans

Molecular microbiology, 2001

The pathogenic fungus Candida albicans is capable of responding to a wide variety of environmental cues with a morphological transition from a budding yeast to a polarized filamentous form. We demonstrate that the Ras homologue of C. albicans, CaRas1p, is required for this morphological transition and thereby contributes to the development of pathogenicity. However, CaRas1p is not required for cellular viability. Deletion of both alleles of the CaRAS1 gene caused in vitro defects in morphological transition that were reversed by either supplementing the growth media with cAMP or overexpressing components of the filament-inducing mitogen-activated protein (MAP) kinase cascade. The induction of filament-specific secreted aspartyl proteinases encoded by the SAP4-6 genes was blocked in the mutant cells. The defects in filament formation were also observed in situ after phagocytosis of C. albicans cells in a macrophage cell culture assay and, in vivo, after infection of kidneys in a mous...