Exogenous anandamide protects rat brain against acute neuronal injury in vivo (original) (raw)
Related papers
The “Dark Side” of Endocannabinoids: A Neurotoxic Role for Anandamide
Journal of Cerebral Blood Flow and Metabolism, 2004
Endocannabinoids, including 2-arachidonoylglycerol and anandamide (N-arachidonoylethanolamine; AEA), have neuroprotective effects in the brain through actions at CB1 receptors. However, AEA also binds to vanilloid (VR1) receptors and induces cell death in several cell lines. Here we show that anandamide causes neuronal cell death in vitro and exacerbates cell loss caused by stretch-induced axonal injury or trophic withdrawal in rat primary neuronal cultures. Administered intracerebroventricularly, AEA causes sustained cerebral edema, as reflected by diffusion-weighted magnetic resonance imaging, regional cell loss, and impairment in long-term cognitive function. These effects are mediated, in part, through VR1 as well as through calpain-dependent mechanisms, but not through CB1 receptors or caspases. Central administration of AEA also significantly upregulates genes involved in proinflammatory/microglial-related responses. Thus, anandamide produces neurotoxic effects both in vitro and in vivo through multiple mechanisms independent of the CB1 receptor.
Pediatric …, 2007
Neonatal hypoxic-ischemic encephalopathy (NHIE) is a devastating condition for which effective therapeutic treatments are still unavailable. Cannabinoids emerge as neuroprotective substances in adult animal studies; therefore, we aimed herein to test whether cannabinoids might reduce brain damage induced by hypoxiaischemia (HI) in newborn rats. Thus, 7-d-old Wistar rats (P7) were exposed to 8% O 2 for 120 min after left carotid artery ligature, then received s.c. vehicle (VEH) (HIϩVEH), the cannabinoid agonist WIN55212 (WIN) (0.1 mg/kg), or WIN with the CB 1 or CB 2 receptor antagonist SR141617 (SR1) (3 mg/kg) or SR141588 (SR2) (2 mg/kg). Brain damage was assessed by magnetic resonance imaging (MRI) at 1, 3, and 7 d after the insult. At the end of the experiment, MRI findings were corroborated by histology (Nissl staining). HIϩVEH showed an area of cytotoxic and vasogenic edema at 24 h after the insult, then evolving to necrosis. HIϩWIN showed a similar damaged area at 24 h after the insult, but the final necrotic area was reduced by 66%. Coadministration of either SR1 or SR2 reversed the effects of WIN. In conclusion, likely by activating CB 1 and CB 2 receptors, WIN afforded robust neuroprotection in newborn rats after HI.
British Journal of Pharmacology, 2006
1 Brain lesions induced in newborn mice or rats by the glutamatergic agonists ibotenate (acting on NMDA and metabotropic receptors) or S-bromowillardiine (acting on AMPA-kainate receptors) mimic some aspects of white matter cysts and transcortical necrosis observed in human perinatal brain damage associated with cerebral palsy. Exogenous and endogenous cannabinoids have received increasing attention as potential neuroprotective agents in a number of neurodegenerative disorders of the adult. One recent study showed neuroprotection by the cannabinoid agonist WIN-55212 in a newborn rat model of acute severe asphyxia. 2 The present study was designed to assess the neuroprotective effects of the endogenous cannabinoid anandamide using a well-defined rodent model of neonatal excitotoxic brain lesions. 3 In this model, anandamide provided dose-dependent and long-lasting protection of developing white matter and cortical plate reducing the size of lesions induced by S-bromowillardiine. Anandamide had only marginal neuroprotective effect against ibotenate-induced cortical grey matter lesions. Anandamide-induced neuroprotection against AMPA-kainate receptor-mediated brain lesions were blocked by a CB1 antagonist but not by a CB2 antagonist. Furthermore, anandamide effects were mimicked by a CB1 agonist but not by a CB2 agonist. Real-time PCR confirmed the expression of CB1 receptors, but not CB2 receptors, in the untreated newborn neocortex. Finally, neuroprotective effects of anandamide in white matter involved increased survival of preoligodendrocytes and better preservation of myelination. 4 The present study provides experimental support for the role of endocannabinoids as a candidate therapy for excitotoxic perinatal brain lesions.
Neuropharmacology, 2011
Cannabinoids (CBs) are implicated in a number of physiological and pathological mechanisms in the central nervous system, but their exact role in post-ischemic brain injury is unclear. The toxic and neuroprotective effects of synthetic and endogenous CBs were evaluated in rat organotypic hippocampal slices exposed to 20 min oxygen-glucose deprivation (OGD) and in gerbils subjected to bilateral carotid occlusion for 5 min. When present in the incubation medium, the synthetic CB agonists WIN 55212-2 and CP 55940 (1-30 μM) and the CB1 agonist ACEA exacerbated CA1 injury induced by OGD, whereas the CB1 receptor antagonists AM 251 and LY 320135 were neuroprotective with maximal activity at 1 μM. AM 251 (at 3 mg/kg, i.p.) also attenuated CA1 pyramidal cell death in gerbils in vivo. The endocannabinoid 2-arachidonoylglycerol (2-AG) reduced OGD injury in hippocampal slices at 0.1-1 μM, whereas anandamide (AEA) was neurotoxic at the same concentrations. The effects of WIN 55212-2, AEA and 2-AG in slices were all dependent on the activation of CB1 but not CB2 receptors, except for the toxic effects of AEA that were also dependent on vanilloid TRPV1 receptors. Our results suggest that exogenous administration of CB1 agonists and the production of endocannabinoids "on demand" may produce different, if not opposite, effects on the fate of neurons following cerebral ischemia.
Endocannabinoids and traumatic brain injury
British Journal of Pharmacology, 2011
Traumatic brain injury (TBI) represents the leading cause of death in young individuals. It triggers the accumulation of harmful mediators, leading to secondary damage, yet protective mechanisms are also set in motion. The endocannabinoid (eCB) system consists of ligands, such as anandamide and 2-arachidonoyl-glycerol (2-AG), receptors (e.g. CB1, CB2), transporters and enzymes, which are responsible for the 'on-demand' synthesis and degradation of these lipid mediators. There is a large body of evidence showing that eCB are markedly increased in response to pathogenic events. This fact, as well as numerous studies on experimental models of brain toxicity, neuroinflammation and trauma supports the notion that the eCB are part of the brain's compensatory or repair mechanisms. These are mediated via CB receptors signalling pathways that are linked to neuronal survival and repair. The levels of 2-AG, the most highly abundant eCB, are significantly elevated after TBI and when administered to TBI mice, 2-AG decreases brain oedema, inflammation and infarct volume and improves clinical recovery. The role of CB1 in mediating these effects was demonstrated using selective antagonists or CB1 knockout mice. CB2 were shown in other models of brain insults to reduce white blood cell rolling and adhesion, to reduce infarct size and to improve motor function. This review is focused on the role the eCB system plays as a self-neuroprotective mechanism and its potential as a basis for the development of novel therapeutic modality for the treatment of CNS pathologies with special emphasis on TBI.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
Type 1 vanilloid receptors (VR1) have been identified recently in the brain, in which they serve as yet primarily undetermined purposes. The endocannabinoid anandamide (AEA) and some of its oxidative metabolites are ligands for VR1, and AEA has been shown to afford protection against ouabain-induced in vivo excitotoxicity, in a manner that is only in part dependent on the type 1 cannabinoid (CB1) receptor. In the present study, we assessed whether VR1 is involved in neuroprotection by AEA and by arvanil, a hydrolysis-stable AEA analog that is a ligand for both VR1 and CB1. Furthermore, we assessed the putative involvement of lipoxygenase metabolites of AEA in conveying neuroprotection. Using HPLC and gas chromatography/mass spectroscopy, we demonstrated that rat brain and blood cells converted AEA into 12-hydroxy-N-arachidoylethanolamine (12-HAEA) and 15-hydroxy-N-arachidonoylethanolamine (15-HAEA) and that this conversion was blocked by addition of the lipoxygenase inhibitor nordih...
Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures
The Journal of neuroscience : the official journal of the Society for Neuroscience, 1999
Marijuana and related drugs (cannabinoids) have been proposed as treatments for a widening spectrum of medical disorders. R(+)-[2, 3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1, 4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate (R(+)-WIN 55212-2), a synthetic cannabinoid agonist, decreased hippocampal neuronal loss after transient global cerebral ischemia and reduced infarct volume after permanent focal cerebral ischemia induced by middle cerebral artery occlusion in rats. The less active enantiomer S(-)-WIN 55212-3 was ineffective, and the protective effect of R(+)-WIN 55212-2 was blocked by the specific central cannabinoid (CB1) cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide-hydrochloride. R(+)-WIN 55212-2 also protected cultured cerebral cortical neurons from in vitro hypoxia and glucose deprivation, but in contrast to the receptor-mediated neuroprotection observed in vivo, this in...
Post-ischemic brain damage: the endocannabinoid system in the mechanisms of neuronal death
FEBS Journal, 2008
A wealth of information has accumulated to date concerning the basic mechanisms underlying post-ischemic neuronal death in the mammalian brain. In the course of cerebral ischemia (i.e. stroke, trauma, cardiac arrest), abnormal levels of the excitatory amino acid glutamate build up in the brain, causing 'axon-sparing' excitotoxic neuronal death. The recognized trigger for such a devastating event is the excessive stimulation of glutamate receptors, particularly of the ionotropic [i.e. N-methyl-d-aspartate (NMDA)] subtype, which leads to the accumulation of toxic amounts of intracellular free calcium and of nitrogen and oxygen radical species, and to oxidative stress, committing the neuron to death via activation of different downstream death pathways selected in relation to the strength of the detrimental stimulus [1]. This mechanism represents