Full-Length Human Mutant Huntingtin with a Stable Polyglutamine Repeat Can Elicit Progressive and Selective Neuropathogenesis in BACHD Mice (original) (raw)

Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease

Human Molecular Genetics, 2002

Both transcriptional dysregulation and proteolysis of mutant huntingtin (htt) are postulated to be important components of Huntington's disease (HD) pathogenesis. In previous studies, we demonstrated that transgenic mice that express short mutant htt fragments containing 171 or fewer N-terminal residues (R6/2 and N171-82Q mice) recapitulate many of the mRNA changes observed in human HD brain. To examine whether htt protein length influences the ability of its expanded polyglutamine domain to alter gene expression, we conducted mRNA profiling analyses of mice that express an extended N-terminal fragment (HD46, HD100; 964 amino acids) or full-length (YAC72; 3144 amino acids) mutant htt transprotein. Oligonucleotide microarray analyses of HD46 and YAC72 mice identified fewer differentially expressed mRNAs than were seen in transgenic mice expressing short N-terminal mutant htt fragments. Histologic analyses also detected limited changes in these mice (small decreases in adenosine A2a receptor mRNA and dopamine D2 receptor binding in HD100 animals; small increases in dopamine D1 receptor binding in HD46 and HD100 mice). Neither HD46 nor YAC72 mice exhibited altered mRNA levels similar to those observed previously in R6/2 mice, N171-82Q mice or human HD patients. These findings suggest that htt protein length influences the ability of an expanded polyglutamine domain to alter gene expression. Furthermore, our findings suggest that short N-terminal fragments of mutant htt might be responsible for the gene expression alterations observed in human HD brain.

A Novel BACHD Transgenic Rat Exhibits Characteristic Neuropathological Features of Huntington Disease

Journal of Neuroscience, 2012

Huntington disease (HD) is an inherited progressive neurodegenerative disorder, characterized by motor, cognitive, and psychiatric deficits as well as neurodegeneration and brain atrophy beginning in the striatum and the cortex and extending to other subcortical brain regions. The genetic cause is an expansion of the CAG repeat stretch in the HTT gene encoding huntingtin protein (htt). Here, we generated an HD transgenic rat model using a human bacterial artificial chromosome (BAC), which contains the full-length HTT genomic sequence with 97 CAG/CAA repeats and all regulatory elements. BACHD transgenic rats display a robust, early onset and progressive HD-like phenotype including motor deficits and anxiety-related symptoms. In contrast to BAC and yeast artificial chromosome HD mouse models that express full-length mutant huntingtin, BACHD rats do not exhibit an increased body weight. Neuropathologically, the distribution of neuropil aggregates and nuclear accumulation of N-terminal mutant huntingtin in BACHD rats is similar to the observations in human HD brains. Aggregates occur more frequently in the cortex than in the striatum and neuropil aggregates appear earlier than mutant htt accumulation in the nucleus. Furthermore, we found an imbalance in the striatal striosome and matrix compartments in early stages of the disease. In addition, reduced dopamine receptor binding was detectable by in vivo imaging. Our data demonstrate that this transgenic BACHD rat line may be a valuable model for further understanding the disease mechanisms and for preclinical pharmacological studies.

Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease

Philosophical Transactions of the Royal Society B: Biological Sciences, 1999

Huntington's disease (HD) is a progressive neurodegenerative disorder characterized clinically by motor and psychiatric disturbances and pathologically by neuronal loss and gliosis (reactive astrocytosis) particularly in the striatum and cerebral cortex. We have recently created HD full-length cDNA transgenic mouse models that may serve as a paradigm for HD. A more detailed characterization of these models is presented here. The transgene encoding normal huntingtin consists of 9417 bp of the huntingtin coding sequences including 16 tandem CAGs coding for polyglutamines as part of exon 1. The transgene is driven by a heterologous cytomegalovirus promoter. Five independent transgenic mouse lines were obtained using this construct. An additional six transgenic lines were obtained using full-length HD constructs that have been modi¢ed to include either 48 or 89 CAG repeat expansions. Southern blot and densitometric analyses indicated unique integration sites for the transgene in each of the lines with a copy number ranging from two to 22 copies. Widespread expression of the transgene in brain, heart, spleen, kidney, lung, liver and gonads from each line was determined by Western blot analyses. In the brain, transgene expression was found in cerebral cortex, striatum, hippocampus and cerebellum. Expression of the transgene was as much as ¢ve times the endogenous mouse huntingtin level.

Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington's disease

Human Molecular Genetics, 2008

A number of mouse models expressing mutant huntingtin (htt) with an expanded polyglutamine (polyQ) domain are useful for studying the pathogenesis of Huntington's disease (HD) and identifying appropriate therapies. However, these models exhibit neurological phenotypes that differ in their severity and nature. Understanding how transgenic htt leads to variable neuropathology in animal models would shed light on the pathogenesis of HD and help us to choose HD models for investigation. By comparing the expression of mutant htt at the transcriptional and protein levels in transgenic mice expressing N-terminal or fulllength mutant htt, we found that the accumulation and aggregation of mutant htt in the brain is determined by htt context. HD mouse models demonstrating more severe phenotypes show earlier accumulation of N-terminal mutant htt fragments, which leads to the formation of htt aggregates that are primarily present in neuronal nuclei and processes, as well as glial cells. Similarly, transgenic monkeys expressing exon-1 htt with a 147-glutamine repeat (147Q) died early and showed abundant neuropil aggregates in swelling neuronal processes. Fractionation of HD150Q knock-in mice brains revealed an age-dependent accumulation of N-terminal mutant htt fragments in the nucleus and synaptosomes, and this accumulation was most pronounced in the striatum due to decreased proteasomal activity. Our findings suggest that the neuropathological phenotypes of HD stem largely from the accumulation of N-terminal mutant htt fragments and that this accumulation is determined by htt context and cell-type-dependent clearance of mutant htt.

Putting the Brakes on Huntington Disease in a Mouse Experimental Model

PLoS genetics, 2015

Huntington disease (HD) is a hereditary neurodegenerative disorder that causes a progressively debilitating impact on movement, cognition, speech, and mood. It most commonly develops during adulthood and worsens over a 10-15-year period. The genetic basis of HD is an expansion of the (CAG) n trinucleotide repeat in the first exon of the HTT gene [1,2]. Although the function of the normal HTT protein is not well established, in-frame repeat expansion results in the accumulation of an abnormally long polyglutamine tract, which is believed to contribute to mutant protein toxicity and neural degeneration [3]. Consequently, CAG repeat length is inversely correlated with age of onset and severity of disease. Disease-size CAG repeats are prone to further lengthening, which leads to two distinct aspects of their instability: expansions during intergenerational transmissions and somatic expansions occurring throughout the lifetime of an individual (Fig 1A). An outstanding question in the field is whether somatic expansions contribute to disease. The problem is that somatic expansions occur in the context of expressing an already toxic protein, making it difficult to address this question. Two commonly discussed ideas are that (i) disease arises with time because of expression of the toxic protein or RNA or that (ii) the onset of disease depends on gradual accumulation of somatic expansions in patients' tissues throughout life. To distinguish between these scenarios, it is critical to assess to what extent, if any, somatic expansions accelerate disease progression. Since 1993 when the cause of HD was first reported, substantial effort has been made to understand the molecular basis of repeat expansions and the mechanisms of disease pathophysiology. While these studies were conducted in various model systems [4,5], mouse models appeared to be particularly well suited for unraveling disease pathophysiology. Despite a few caveats, such as the much longer CAG repeat lengths (i.e., >100 repeats) needed to recapitulate disease symptoms and the relatively small-scale of expansions, mouse models of HD have led to principal contributions in the field. First, they exhibit both intergenerational and somatic repeat expansions. Second, candidate gene analysis uncovered a surprising role of the mismatch repair (MMR) complex MutSβ in promoting rather than protecting against CAG repeat expansions (Fig 1) [6,7]. A breakthrough in distinguishing between the molecular mechanisms of intergenerational and somatic expansions came with the discovery that loss of 8-oxoguanine glycosylase (OGG1) specifically decreased CAG expansions in somatic cells, but it had no effect on intergenerational transmissions [8]. The main function of OGG1 is to remove 8-oxoguanine (8-oxoG), a mutagenic base by-product accumulating in DNA after its exposure to reactive oxygen species (ROS). It was hypothesized, therefore, that aberrant repair of DNA oxidative damage specifically elevates repeat instability in long-lived differentiated cells, such as neurons. OGG1 excises 8-oxoG, generating a nick in the damaged DNA strand, which is further processed to permit

In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects

Human Molecular Genetics, 2010

Huntington's disease (HD) is a neurodegenerative disorder previously thought to be of primary neuronal origin, despite ubiquitous expression of mutant huntingtin (mHtt). We tested the hypothesis that mHtt expressed in astrocytes may contribute to the pathogenesis of HD. To better understand the contribution of astrocytes in HD in vivo, we developed a novel mouse model using lentiviral vectors that results in selective expression of mHtt into striatal astrocytes. Astrocytes expressing mHtt developed a progressive phenotype of reactive astrocytes that was characterized by a marked decreased expression of both glutamate transporters, GLAST and GLT-1, and of glutamate uptake. These effects were associated with neuronal dysfunction, as observed by a reduction in DARPP-32 and NR2B expression. Parallel studies in brain samples from HD subjects revealed early glial fibrillary acidic protein expression in striatal astrocytes from Grade 0 HD cases. Astrogliosis was associated with morphological changes that increased with severity of disease, from Grades 0 through 4 and was more prominent in the putamen. Combined immunofluorescence showed co-localization of mHtt in astrocytes in all striatal HD specimens, inclusive of Grade 0 HD. Consistent with the findings from experimental mice, there was a significant grade-dependent decrease in striatal GLT-1 expression from HD subjects. These findings suggest that the presence of mHtt in astrocytes alters glial glutamate transport capacity early in the disease process and may contribute to HD pathogenesis.

The molecular biology of Huntington's disease

Psychological Medicine, 2001

Background. Huntington's disease (HD) is a fatal neurodegenerative disorder with an autosomal dominant mode of inheritance. It leads to progressive dementia, psychiatric symptoms and an incapacitating choreiform movement disorder, culminating in premature death. HD is caused by an increased CAG repeat number in a gene coding for a protein with unknown function, called huntingtin. The trinucleotide CAG codes for the amino acid glutamine and the expanded CAG repeats are translated into a series of uninterrupted glutamine residues (a polyglutamine tract).Methods. This review describes the epidemiology, clinical symptomatology, neuropathological features and genetics of HD. The main aim is to examine important findings from animal and cellular models and evaluate how they have enriched our understanding of the pathogenesis of HD and other diseases caused by expanded polyglutamine tracts.Results. Selective death of striatal and cortical neurons occurs. It is likely that the HD mutati...

A novel and accurate full-length HTT mouse model for Huntington’s disease

bioRxiv, 2021

Here we report the generation and characterization of a novel Huntington’s disease (HD) mouse model BAC226Q by using a bacterial artificial chromosome (BAC) system, expressing full-length human HTT with ∼226 CAG-CAA repeats and containing endogenous human HTT promoter and regulatory elements. BAC226Q recapitulated a full-spectrum of age-dependent and progressive HD-like phenotypes without unwanted and erroneous phenotypes. BAC226Q mice developed normally, and gradually exhibited HD-like mood and cognitive phenotypes at 2 months. From 3-4 months, BAC226Q mice showed robust progressive motor deficits. At 11 months, BAC226Q mice showed significant reduced life span, gradual weight loss and exhibit neuropathology including significant brain atrophy specific to striatum and cortex, striatal neuronal death, widespread huntingtin inclusions and reactive pathology. Therefore, the novel BAC226Q mouse accurately recapitulating robust, age-dependent, progressive HD-like phenotypes will be a va...

Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 CAG repeats

The Journal of Comparative Neurology, 2003

Huntington's disease (HD) is caused by an abnormal expansion of CAG repeats in the gene encoding huntingtin. The development of therapies for HD requires preclinical testing of drugs in animal models that reproduce the dysfunction and regionally specific pathology observed in HD. We have developed a new knock-in mouse model of HD with a chimeric mouse/human exon 1 containing 140 CAG repeats inserted in the murine huntingtin gene. These mice displayed an increased locomotor activity and rearing at 1 month of age, followed by hypoactivity at 4 months and gait anomalies at 1 year. Behavioral symptoms preceded neuropathological anomalies, which became intense and widespread only at 4 months of age. These consisted of nuclear staining for huntingtin and huntingtin-containing nuclear and neuropil aggregates that first appeared in the striatum, nucleus accumbens, and olfactory tubercle. Interestingly, regions with early pathology all receive dense dopaminergic inputs, supporting accumulating evidence for a role of dopamine in HD pathology. Nuclear staining and aggregates predominated in striatum and layer II/III and deep layer V of the cerebral cortex, whereas neuropil aggregates were found in the globus pallidus and layer IV/ superficial layer V of the cerebral cortex. The olfactory system displayed early and marked aggregate accumulation, which may be relevant to the early deficit in odor discrimination observed in patients with HD. Because of their early behavioral anomalies and regionally specific pathology, these mice provide a powerful tool with which to evaluate the effectiveness of new therapies and to study the mechanisms involved in the neuropathology of HD. J.

Huntington's disease: from gene to potential therapy

Genetic Approach to Neuropsychiatric Disorders, 2001

Huntington's disease (HD) is a progressive, late-onset neurodegenerative illness with autosomal dominant inheritance that affects one in 10 000 individuals in Western Europe. The disease is caused by a polyglutamine repeat expansion located in the N-terminal region of the huntingtin protein. The mutation is likely to act by a gain of function, but the molecular mechanisms by which it leads to neuronal dysfunction and cell death are not yet known. The normal function of huntingtin in cell metabolism is also unclear. There is no therapy for HD. Research on HD should help elucidate the pathogenetic mechanism of this illness in order to develop successful treatments to prevent or slow down symptoms. This article presents new results in HD research focusing on in vivo and in vitro model systems, potential molecular mechanisms of HD, and the development of therapeutic strategies.