Role for substance p-based nociceptive signaling in progenitor cell activation and angiogenesis during ischemia in mice and in human subjects (original) (raw)

Role of substance P signaling in enhanced nociceptive sensitization and local cytokine production after incision

PAIN, 2009

Substance P (SP) signaling facilitates nociceptive sensitization in various inflammatory and chronic pain models and we postulated that SP signaling might also contribute to the development of postincisional hyperalgesia. These studies used mice with a deletion of the pre-protachykinin A gene (ppt-A −/−) which codes for SP to determine the role of SP signaling in post-incisional pain and in the increased cytokine and nerve growth factor (NGF) expression observed in the incised skin. SP deficient ppt-A(−/−) mice displayed reduced mechanical allodynia and heat hyperalgesia compared to the wild type (wt) mice at all post-incision time points, despite similar baseline values (p<0.001). Furthermore, the NK-1 receptor antagonist LY303870 attenuated mechanical allodynia produced by incision in the wt mice (p<0.001). Incision also up-regulated IL-6, TNF-α and KC levels but not IL-1β after 2 hours in the wt mice skin. However, ppt-A(−/−) mice had more skin NGF levels 2 hours post incision. Subcutaneous hind paw SP injection produced acute and transient elevations of IL-1β, IL-6, and KC but modest elevations in TNF-α levels in the wt mice. Systemic LY303870 reversed the SP induced elevations of these cytokines. Hind paw injection of IL-6 and NGF dose dependently produced less mechanical allodynia in the ppt-A(−/−) compared to wt mice. Additionally, SP produced mechanical allodynia in a dose dependent fashion in wt mice. Therefore, SP supports nociceptive sensitization after hind paw incision and potentially participates directly in modulating the intensity of inflammatory response in peri-incisional tissue.

Sensory neuropathy hampers nociception-mediated bone marrow stem cell release in mice and patients with diabetes

Diabetologia, 2015

Aims/hypothesis Upon tissue injury, peripheral sensory neurons release nociceptive factors (e.g. substance P [SP]), which exert local and systemic actions including the recruitment of bone marrow (BM)-derived haematopoietic stem and progenitor cells (HSPCs) endowed with paracrine pro-angiogenic properties. We herein explore whether diabetic neuropathy interferes with these phenomena. Methods We first investigated the presence of sensory neuropathy in the BM of patients with type 2 diabetes by immunohistochemistry and morphometry analyses of nerve size and density and assessment of SP release by ELISA. We next analysed the association of sensory neuropathy with altered HSPC release under ischaemia or following direct stimulation with granulocyte colony-stimulating factor (G-CSF). BM and circulating HSPCs expressing the neurokinin 1 receptor (NK1R), which is the main SP receptor, were measured by flow cytometry. We finally assessed whether an altered modulation of SP secretion interferes with the mobilisation and homing of NK1R-HSPCs in a mouse model of type 2 diabetes after limb ischaemia (LI). Results Nociceptive fibres were reduced in the BM of patients and mice with type 2 diabetes. Patients with neuropathy showed a remarkable reduction in NK1R-HSPC mobilisation under ischaemia or upon G-CSF stimulation. Following LI, diabetic mice manifested an altered SP gradient between BM, peripheral blood and limb muscles, accompanied by a depressed recruitment of NK1R-HSPCs to the ischaemic site. Conclusions/interpretation Sensory neuropathy translates into defective liberation and homing of reparative HSPCs. Nociceptors may represent a new target for treatment of diabetic complications. Zexu Dang and Davide Maselli contributed equally to this work.

Enhancement of Angiogenesis by Endogenous Substance P Release and Neurokinin-1 Receptors During Neurogenic Inflammation

Journal of Pharmacology and Experimental Therapeutics, 2003

Early angiogenesis is a key step in the transition from acute to persistent inflammation. The nervous system has long been known to play a role in inflammation, in part through the release of substance P from peripheral nerve terminals (neurogenic inflammation). Application of substance P can stimulate vessel growth in a variety of angiogenesis assays, although it was previously not known whether endogenous substance P released from sensory nerves could modulate angiogenesis. We hypothesized that endogenous substance P can initiate angiogenesis during acute neurogenic inflammation. Here we show that 10 nmol of substance P can stimulate angiogenesis within the rat knee synovium, as shown by increased endothelial cell proliferation index [PCNA index, 19% (95% confidence interval (CI), 17 to 20%)] compared with saline injected knees [6% (95% CI, 4% to 8%), p Ͻ 0.05]. Moreover, this was prevented by

NF-KappaB Pathway Is Involved in Bone Marrow Stromal Cell-Produced Pain Relief

Frontiers in integrative neuroscience, 2018

Bone marrow stromal cells (BMSCs) produce long-lasting attenuation of pain hypersensitivity. This effect involves BMSC's ability to interact with the immune system and activation of the endogenous opioid receptors in the pain modulatory circuitry. The nuclear factor kappa B (NF-κB) protein complex is a key transcription factor that regulates gene expression involved in immunity. We tested the hypothesis that the NF-κB signaling plays a role in BMSC-induced pain relief. We focused on the rostral ventromedial medulla (RVM), a key structure in the descending pain modulatory pathway, that has been shown to play an important role in BMSC-produced antihyperalgesia. In Sprague-Dawley rats with a ligation injury of the masseter muscle tendon (TL), BMSCs (1.5 M/rat) from donor rats were infused i.v. at 1 week post-TL. P65 exhibited predominant neuronal localization in the RVM with scattered distribution in glial cells. At 1 week, but not 8 weeks after BMSC infusion, western blot and immu...

Keratinocyte expression of inflammatory mediators plays a crucial role in substance P-induced acute and chronic pain

Journal of Neuroinflammation, 2012

Tibia fracture in rats followed by cast immobilization leads to nociceptive, trophic, vascular and bone-related changes similar to those seen in Complex Regional Pain Syndrome (CRPS). Substance P (SP) mediated neurogenic inflammation may be responsible for some of the signs of CRPS in humans. We therefore hypothesized that SP acting through the SP receptor (NK1) leads to the CRPS-like changes found in the rat model. In the present study, we intradermally injected rats with SP and monitored hindpaw mechanical allodynia, temperature, and thickness as well as tissue levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), and nerve growth factor-β (NGF) for 72 h. Anti-NGF antibody was utilized to block the effects of SP-induced NGF up-regulation. Fracture rats treated with the selective NK1 receptor antagonist LY303870 prior to cast removal were assessed for BrdU, a DNA synthesis marker, incorporation in skin cells to examine cellular proliferation. Bone microarchitecture was measured using micro computed tomography (μCT). We observed that: (1) SP intraplantar injection induced mechanical allodynia, warmth and edema as well as the expression of nociceptive mediators in the hindpaw skin of normal rats, (2) LY303870 administered intraperitoneally after fracture attenuated allodynia, hindpaw unweighting, warmth, and edema, as well as cytokine and NGF expression, (3) LY303870 blocked fracture-induced epidermal thickening and BrdU incorporation after fracture, (4) anti-NGF antibody blocked SP-induced allodynia but not warmth or edema, and (5) LY303870 had no effect on bone microarchitecture. Collectively our data indicate that SP acting through NK1 receptors supports the nociceptive and vascular components of CRPS, but not the bone-related changes.

Norepinephrine-induced nociception and vasoconstrictor hypersensitivity in rats with chronic post-ischemia pain

Pain, 2008

Painful hypersensitivity to norepinephrine (NE) has been reported in various chronic pain conditions that exhibit sympathetically-maintained pain (SMP), particularly CRPS-I and II. We investigated the parallels between the nociceptive and vascular sensitivity to NE in rats with chronic post-ischemia pain (CPIP), an animal model of CRPS-I induced by hind paw ischemia-reperfusion injury. Intradermal injections of NE to the affected hind paw induced dose-dependent nociceptive behaviours in CPIP rats, but not sham animals. These behaviours were blocked by a 1 -and a 2 -adrenergic receptor antagonists, or a nitric oxide (NO) donor. Using laser Doppler flowmetry, we detected vasoconstrictor hypersensitivity in the ipsilateral CPIP hind paw, as compared to responses in sham animals or the contralateral hind paw. The vasoconstrictor hypersensitivity was also attenuated by adrenergic antagonists. Intradermal injection of [Arg 8 ] vasopressin (AVP) or the endothelial NO synthase (eNOS) inhibitor, L-NIO, to the affected paw also induced nociceptive behaviours in CPIP rats, but not sham rats. These results suggest CPIP rats display abnormal nociceptive responses to adrenergic and non-adrenergic vasoconstrictive agents. Furthermore, the nociceptive responses to NE in CPIP rats are paralleled by enhanced vasoconstrictive responses to NE, and are relieved by a-adrenergic antagonists or a vasodilator. We conclude that persistent tissue ischemia and hypersensitivity to sympathetic vasoconstriction are important mechanisms for pain in CPIP rats, and that either reducing vasoconstriction or enhancing vasodilatation may be effective methods of relieving the pain of CRPS-I. Ó

Morphine peripheral analgesia depends on activation of the PI3K /AKT/nNOS/NO/KATP signaling pathway

Proceedings of The National Academy of Sciences, 2010

Morphine is one of the most prescribed and effective drugs used for the treatment of acute and chronic pain conditions. In addition to its central effects, morphine can also produce peripheral analgesia. However, the mechanisms underlying this peripheral action of morphine have not yet been fully elucidated. Here, we show that the peripheral antinociceptive effect of morphine is lost in neuronal nitric-oxide synthase null mice and that morphine induces the production of nitric oxide in primary nociceptive neurons. The activation of the nitric-oxide pathway by morphine was dependent on an initial stimulation of PI3Kγ/AKT protein kinase B (AKT) and culminated in increased activation of K ATP channels. In the latter, this intracellular signaling pathway might cause a hyperpolarization of nociceptive neurons, and it is fundamental for the direct blockade of inflammatory pain by morphine. This understanding offers new targets for analgesic drug development.

Preprotachykinin-A Gene Disruption Attenuates Nociceptive Sensitivity After Opioid Administration and Incision by Peripheral and Spinal Mechanisms in Mice

The Journal of Pain, 2012

The preprotachykinin A gene (ppt-A) codes for Substance P (SP), supports nociceptive sensitization and modulates inflammatory responses after incision. Repeated opioid use produces paradoxical pain sensitization, termed opioid induced hyperalgesia (OIH) which can exacerbate pain after incision. Here the contribution of SP to peri-incisional nociceptive sensitization and nociceptive mediator production after opioid treatment was examined utilizing ppt-A knockout (−/ −) mice and the neurokinin (NK1) receptor antagonist LY303870. Less mechanical allodynia was observed in ppt-A −/− mice compared to wild types (wt) after morphine treatment both before and after incision. Moreover, LY303870 administered with morphine reduced incisional hyperalgesia in wt mice. Incision after saline or escalating morphine treatment up-regulated skin IL-1β, IL-6, G-CSF and MIP-1α levels in ppt-A −/− and wt mice similarly. However, chronic morphine treatment greatly exacerbated increases in skin NGF levels after incision, an effect entirely dependent upon intact SP signaling. Additionally, SP dependent up-regulation of prodynorphin, NMDA1 and NK1 receptor expression in spinal cord was seen after morphine treatment and incision. A similar pattern was seen for 5-HT3 receptor expression in tissue from dorsal root ganglia. Therefore, SP may work at both central and peripheral sites to enhance nociceptive sensitization after morphine treatment and incision.

Nerve growth factor gene therapy improves bone marrow sensory innervation and nociceptor-mediated stem cell release in a mouse model of type 1 diabetes with limb ischaemia

Diabetologia, 2019

Aims/hypothesis Sensory neuropathy is common in people with diabetes; neuropathy can also affect the bone marrow of individuals with type 2 diabetes. However, no information exists on the state of bone marrow sensory innervation in type 1 diabetes. Sensory neurons are trophically dependent on nerve growth factor (NGF) for their survival. The aim of this investigation was twofold: (1) to determine if sensory neuropathy affects the bone marrow in a mouse model of type 1 diabetes, with consequences for stem cell liberation after tissue injury; and (2) to verify if a single systemic injection of the NGF gene exerts long-term beneficial effects on these phenomena. Methods A mouse model of type 1 diabetes was generated in CD1 mice by administration of streptozotocin; vehicle was administered to non-diabetic control animals. Diabetic animals were randomised to receive systemic gene therapy with either human NGF or β-galactosidase. After 13 weeks, limb ischaemia was induced in both groups to study the recovery post injury. When the animals were killed, samples of tissue and peripheral blood were taken to assess stem cell mobilisation and homing, levels of substance P and muscle vascularisation. An in vitro cellular model was adopted to verify signalling downstream to human NGF and related neurotrophic or pro-apoptotic effects. Normally distributed variables were compared between groups using the unpaired Student's t test and non-normally distributed variables were assessed by the Wilcoxon-Mann-Whitney test. The Fisher's exact test was employed for categorical variables. Results Immunohistochemistry indicated a 3.3-fold reduction in the number of substance P-positive nociceptive fibres in the bone marrow of type 1 diabetic mice (p < 0.001 vs non-diabetic). Moreover, diabetes abrogated the creation of a neurokinin gradient which, in non-diabetic mice, favoured the mobilisation and homing of bone-marrow-derived stem cells expressing the substance P receptor neurokinin 1 receptor (NK1R). Pre-emptive gene therapy with NGF prevented bone marrow denervation, contrasting with the inhibitory effect of diabetes on the mobilisation of NK1R-expressing stem cells, and restored blood flow recovery from limb ischaemia. In vitro hNGF induced neurite outgrowth and exerted anti-apoptotic actions on rat PC12 cells exposed to high glucose via activation of the canonical neurotrophic tyrosine kinase receptor type 1 (TrkA) signalling pathway. Conclusions/interpretation This study shows, for the first time, the occurrence of sensory neuropathy in the bone marrow of type 1 diabetic mice, which translates into an altered modulation of substance P and depressed release of substance P-responsive stem cells following ischaemia. NGF therapy improves bone marrow sensory innervation, with benefits for healing on the occurrence of peripheral ischaemia. Nociceptors may represent a new target for the treatment of ischaemic complications in diabetes. Zexu Dang and Elisa Avolio contributed equally to this study.

Bradykinin Receptors Play a Critical Role in the Chronic Post-ischaemia Pain Model

Cellular and Molecular Neurobiology, 2020

Complex regional pain syndrome type-I (CRPS-I) is a chronic painful condition resulting from trauma. Bradykinin (BK) is an important inflammatory mediator required in acute and chronic pain response. The objective of this study was to evaluate the association between BK receptors (B 1 and B 2) and chronic post-ischaemia pain (CPIP) development in mice, a widely accepted CRPS-I model. We assessed mechanical and cold allodynia, and paw oedema in male and female Swiss mice exposed to the CPIP model. Upon induction, the animals were treated with BKR antagonists (HOE-140 and DALBK); BKR agonists (Tyr-BK and DABK); antisense oligonucleotides targeting B 1 and B 2 and captopril by different routes in the model (7, 14 and 21 days post-induction). Here, we demonstrated that treatment with BKR antagonists, by intraperitoneal (i.p.), intraplantar (i.pl.), and intrathecal (i.t.) routes, mitigated CPIP-induced mechanical allodynia and oedematogenic response, but not cold allodynia. On the other hand, i.pl. administration of BKR agonists exacerbated pain response. Moreover, a single treatment with captopril significantly reversed the anti-allodynic effect of BKR antagonists. In turn, the inhibition of BKRs gene expression in the spinal cord inhibited the nociceptive behaviour in the 14th post-induction. The results of the present study suggest the participation of BKRs in the development and maintenance of chronic pain associated with the CPIP model, possibly linking them to CRPS-I pathogenesis.