Effect of lipid bilayer properties on the photocycle of green proteorhodopsin (original) (raw)

Phosphatidylethanolamine and phosphatidylglycerol are segregated into different domains in bacterial membrane. A study with pyrene-labelled phospholipids

Molecular Microbiology, 2003

To detect and characterize membrane domains that have been proposed to exist in bacteria, two kinds of pyrene-labelled phospholipids, 2-pyrene-decanoylphosphatidylethanolamine (PY-PE) and 2-pyrenedecanoyl-phosphatidylglycerol (PY-PG) were inserted into Escherichia coli or Bacillus subtilis membrane. The excimerization rate coefficient, calculated from the excimer-to-monomer ratio dependencies on the probe concentration, was two times higher for PY-PE than for PY-PG at 37 ∞ ∞ ∞ ∞ C. This was ascribed to different local concentrations rather than to differences in mobility. The extent of mixing between the two fluorescent phospholipids, estimated by formation of their heteroexcimer, was found very low both in E. coli and B. subtilis , in contrast to model membranes. In addition, these two pyrene derivatives exhibited different temperature phase transitions and different detergent extractability, indicating that the surroundings of these phospholipids in bacterial membrane differ in organization and order. Inhibition of protein synthesis, leading to condensation of nucleoid and presumably to dissipation of membrane domains, indeed resulted in increased formation of heteroexcimers, broadening of phase transitions and equal detergent extractability of both probes. It is proposed that in bacterial membranes these phospholipids are segregated into distinct domains that differ in composition, proteo-lipid interaction and degree of order; the proteo-lipid domain being enriched by PE.

Rapid Transmembrane Movement of Newly Synthesized Phosphatidylethanolamine across the Inner Membrane of Escherichia coli

Journal of Biological Chemistry, 1998

For the first time the transmembrane movement of an endogenously synthesized phospholipid across the inner membrane of E. coli is reported. [ 14 C]phosphatidylethanolamine (PE) was biosynthetically introduced into inner membrane vesicles from the PE-deficient strain AD93, by reconstitution with the enzyme phosphatidylserine (PS) synthetase. Upon addition of wild type cell lysate containing PS synthetase, and the metabolic substrates CTP and [ 14 C]serine to inside-out vesicles from AD93, [ 14 C]PS was synthesized, which was for the most part converted into [ 14 C]PE. [ 14 C]PE was introduced in right-side out vesicles by enclosing PS synthetase and CTP in the vesicle lumen and adding [ 14 C]serine. The newly synthesized [ 14 C]PE immediately equilibrated over both membrane leaflets (t 1/2 less than one min), as determined by its accessibility toward the amino-reactive chemical fluorescamine. In both insideout and right-side out vesicles, a 35-65% distribution was found of the newly synthesized PE over the cytoplasmic and periplasmic leaflet, respectively. The transport process of PE was not influenced by the presence of ATP or the proton motive force in inside out vesicles. Pretreatment of both types of vesicles with sulfhydryl reagents, or of right-side out vesicles with proteinase K, did not affect the rate and extent of the transmembrane distribution of the newly synthesized PE.

Regulation of lipid polymorphism is eseential for the viability of phosphatidylethano-lamine-deficient Escherichia coli cells.J Biol Chem

Journal of Biological Chemistry

Escherichia coli strain AD93 is unable to synthesize the nonbilayer lipid phosphatidylethanolamine and requires high concentrations of specific divalent cations for growth. Previous studies suggested that in this strain, cardiolipin in combination with divalent cations functionally replaces phosphatidylethanolamine, reflecting polymorphic regulation of membrane lipid composition. However, it is also possible that divalent cations are required for regulation of lipid packing or membrane surface potential. 2H NMR was employed to measure the effect of different divalent cations on lipid packing in aqueous dispersions of lipid extracts isolated from AD93 and the wild type parental strain W3899, which were grown with [ll,ll-2H2]oleic acid. The results indicate that a range of acyl chain order is compatible with growth and that Ba2+, which cannot support growth of AD93, can increase chain packing to the wild type level. By means of microelectrophoresis, it was shown that the growth-promoting cations and Ba2+ have a strong and comparable ability to screen the surface charge of large unilamellar vesicles prepared fromAD93 lipid extracts. Therefore, it is unlikely that the growthpromoting capacity of divalent cations is primarily due to their effect on lipid packing or their potency to decrease the surface potential. Furthermore, the addition of small amounts of Ba2+ to a AD93 lipid dispersion with excess Mg2' diminished H,, phase formation. This observation can explain the growth arrest in AD93 cultures upon the addition of Ba2+ and further supports the conclusion that the cation requirement of this strain arises mainly from polymorphic regulation of lipid composition.

Phosphatidic Acid and N-Acylphosphatidylethanolamine Form Membrane Domains in Escherichia coli Mutant Lacking Cardiolipin and Phosphatidylglycerol

Journal of Biological Chemistry, 2008

The pgsA null Escherichia coli strain, UE54, lacks the major anionic phospholipids phosphatidylglycerol and cardiolipin. Despite these alterations the strain exhibits relatively normal cell division. Analysis of the UE54 phospholipids using negativeion electrospray ionization mass spectrometry resulted in identification of a new anionic phospholipid, N-acylphosphatidylethanolamine. Staining with the fluorescent dye 10-N-nonyl acridine orange revealed anionic phospholipid membrane domains at the septal and polar regions. Making UE54 null in minCDE resulted in budding off of minicells from polar domains. Analysis of lipid composition by mass spectrometry revealed that minicells relative to parent cells were significantly enriched in phosphatidic acid and N-acylphosphatidylethanolamine. Thus despite the absence of cardiolipin, which forms membrane domains at the cell pole and division sites in wildtype cells, the mutant cells still maintain polar/septal localization of anionic phospholipids. These three anionic phospholipids share common physical properties that favor polar/septal domain formation. The findings support the proposed role for anionic phospholipids in organizing amphitropic cell division proteins at specific sites on the membrane surface.

Phosphoethanolamine substitution in the lipid A of Escherichia coli O157 : H7 and its association with PmrC

Microbiology, 2006

This study shows that lipid A ofEscherichia coliO157 : H7 differs from that ofE. coliK-12 in that it has a phosphoform at the C-1 position, which is distinctively modified by a phosphoethanolamine (PEtN) moiety, in addition to the diphosphoryl form. ThepmrCgene responsible for the addition of PEtN to the lipid A ofE. coliO157 : H7 was inactivated and the changes in lipid A profiles were assessed. ThepmrCnull mutant still produced PEtN-modified lipid A species, albeit in a reduced amount, indicating that PmrC was not the only enzyme that could be used to add PEtN to lipid A. Natural PEtN substitution was shown to be present in the lipid A of other serotypes of enterohaemorrhagicE. coliand absent from the lipid A ofE. coliK-12. However, the clonedpmrCO157gene in a high-copy-number plasmid generated a large amount of PEtN-substituted lipid A species inE. coliK-12. The occurrence of PEtN-substituted lipid A species was associated with a slight increase in the MICs of cationic peptide an...

Phosphatidylethanolamine-Phosphatidylglycerol Bilayer as a Model of the Inner Bacterial Membrane

Biophysical Journal, 2005

Phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) are the main lipid components of the inner bacterial membrane. A computer model for such a membrane was built of palmitoyloleoyl PE (POPE) and palmitoyloleoyl PG (POPG) in the proportion 3:1, and sodium ions (Na 1 ) to neutralize the net negative charge on each POPG (POPE-POPG bilayer). The bilayer was simulated for 25 ns. A final 10-ns trajectory fragment was used for analyses. In the bilayer interfacial region, POPEs and POPGs interact readily with one another via intermolecular hydrogen (H) bonds and water bridges. POPE is the main H-bond donor in either PEÁ Á ÁPE or PEÁ Á ÁPG H-bonds; PGÁ Á ÁPG H-bonds are rarely formed. Almost all POPEs are H-bonded and/or water bridged to either POPE or POPG but PE-PG links are favored. In effect, the atom packing in the nearthe-interface regions of the bilayer core is tight. Na 1 does not bind readily to lipids, and interlipid links via Na 1 are not numerous. Although POPG and POPE comprise one bilayer, their bilayer properties differ. The average surface area per POPG is larger and the average vertical location of the POPG phosphate group is lower than those of POPE. Also, the alkyl chains of POPG are more ordered and less densely packed than the POPE chains. The main conclusion of this study is that in the PE-PG bilayer PE interacts more strongly with PG than with PE. This is a likely molecular-level event behind a regulating mechanism developed by the bacteria to control its membrane permeability and stability consisting in changes of the relative PG/PE concentration in the membrane.

Non-bilayer lipids are required for the efficient protein transport across the plasma membrane of E. coli

The EMBO Journal

The construction of a mutant Escherichia coli strain which cannot synthesize phosphatidylethanolamine provides a tool to study the involvement of non-bilayer lipids in membrane function. This strain produces phosphatidylglycerol and cardiolipin (CL) as major membrane constituents and requires millimolar concentrations of divalent cations for growth. In this strain, the lipid phase behaviour is tightly regulated by adjustment of the level of CL which favours a nonbilayer organization in the presence of specific divalent cations. We have used an in vitro system of inverted membrane vesicles to study the involvement of nonbilayer lipids in protein translocation in the secretion pathway. In this system, protein translocation is very low in the absence of divalent cations but can be enhanced by inclusion of Mg2+, Ca2+ or Sr2+ but not by Ba2> which is unable to sustain growth of the mutant strain and cannot induce a non-bilayer phase in E.coli CL dispersions. Alternatively, translocation in cation depleted vesicles could be increased by incorporation of the non-bilayer lipid DOPE (18:1) but not by DMPE (14:0) or DOPC (18:1), both of which are bilayer lipids under physiological conditions. We conclude that non-bilayer lipids are essential for efficient protein transport across the plasma membrane of E.coli.