Combining Chemoselective Ligation with Polyhistidine-Driven Self-Assembly for the Modular Display of Biomolecules on Quantum Dots (original) (raw)
Related papers
Colloidal Quantum Dots for Biomedical Applications IV, 2009
One of the most prominent research areas in nanotechnology is the development of nanoparticle systems for biomedical applications. This is founded upon the expectation that such species could ultimately be imbued with multiple simultaneous functions, such as the presentation of a therapeutic payload or diagnostic sensor for in vivo trafficking to desired cell types. In recent years, semiconductor quantum dots (QDs) have been actively explored as novel display systems, because of their unique photophysical properties. Using an aniline-mediated hydrazone coupling, a polyhisitidine-appended peptide was derivatized with a DNA strand and successfully self-assembled to QDs, yielding nanoparticles displaying up to approximately 15 peptide/DNA conjugates. This ligation method is a viable chemistry for displaying biomolecules, because of the orthogonality of the ketone and hydrazine moieties to most biological functionality and the reaction can be performed under mild conditions in aqueous media. The modified QDs were further characterized by gel electrophoresis, and microarray studies; showing the self-assembly was successful and the DNA strands were still available for hybridization with a complement sequence.
Peptide coated quantum dots for biological applications
2006
Abstract Quantum dots (QDOTs) have been widely recognized by the scientific community and the biotechnology industry, as witnessed by the exponential growth of this field in the past several years. We describe the synthesis and characterization of visible and near infrared QDots-a critical step for engineering organic molecules like proteins and peptides for building nanocomposite materials with multifunctional properties suitable for biological applications
Self-Assembled Quantum Dot−Peptide Bioconjugates for Selective Intracellular Delivery
Bioconjugate Chemistry, 2006
We demonstrate the use of self-assembled luminescent semiconductor quantum dot (QD)-peptide bioconjugates for the selective intracellular labeling of several eukaryotic cell lines. A bifunctional oligoarginine cell penetrating peptide (based on the HIV-1 Tat protein motif) bearing a terminal polyhistidine tract was synthesized and used to facilitate the transmembrane delivery of the QD bioconjugates. The polyhistidine sequence allows the peptide to self-assemble onto the QD surface via metal-affinity interactions while the oligoarginine sequence allows specific QD delivery across the cellular membrane and intracellular labeling as compared to nonconjugated QDs. This peptide-driven delivery is concentration-dependent and thus can be titrated. Upon internalization, QDs display a punctate-like staining pattern in which some, but not all, of the QD signal is colocalized within endosomes. The effects of constant versus limited exposure to QD-peptide conjugates on cellular viability are evaluated by a metabolic specific assay, and clear differences in cytotoxicity are observed. The efficacy of using peptides for selective intracellular delivery is highlighted by performing a multicolor QD labeling, where we found that the presence or absence of peptide on the QD surface controls cellular uptake.
Peptide-functionalized quantum dots for live diagnostic imaging and therapeutic applications
2009
Since their first appearance as optical probes in biological imaging [1, 2], qdots have been applied in most biotechnological applications using fluorescence, including DNA array technology, immunofluorescence assays (reviewed in [3]), and cell and animal biology (reviewed in [4, 5]. Qdots have gained wide acceptance by the scientific community and the biotechnology industry as new fluorescent, nonisotopic labels of unmatched potentials.
Stable, Compact, Bright Biofunctional Quantum Dots with Improved Peptide Coating
The Journal of Physical Chemistry B, 2012
We developed a new peptide, natural phytochelatin (PC), which tightly binds to CdSe/ZnS quantum dots' (QDs) surfaces and renders them water-soluble. Coating QDs with this flexible and all-hydrophilic peptide offers high colloidal stability, adds only 0.8−0.9 nm to the radius of the particles (as compared to their original inorganic radius), preserves very high quantum yield (QY) in water, and affords facile bioconjugation with various functional groups. We demonstrate specific targeting (with minimal nonspecific binding) of such fluorescein-conjugated QDs to ScFv-fused mouse prion protein expressed in live N2A cells. We also demonstrated homogeneous in vivo biodistribution with no significant toxicity in live zebrafish.
2005
We report a simple and versatile approach for the conjugation of luminescent CdSe-ZnS core-shell quantum dots (QDs) to proteins through coordination of engineered C-terminal oligohistidine sequences. Several histidine tail containing proteins were self-assembled onto the QD surface using this method. A recombinant antibody specific for the high explosive 2,4,6-trinitrotoluene (TNT) was conjugated to QDs through a carboxy terminal histidine tail and the bioconjugate used to detect TNT by competitive immunoassay. TNT was detected over the range of 10 g/ml down to 41 ng/ml using the scFv conjugated to QDs. These results open up the possibility to conjugate luminescent QDs to a whole range of proteins to form QD bioconjugates that can be effectively used in bio-oriented applications, such as sensing, imaging, immunoassay and other diagnostics.
Peptide-Labeled Quantum Dots for Imaging GPCRs in Whole Cells and as Single Molecules
Bioconjugate Chemistry, 2007
We report a robust and practical method for the preparation of water-soluble luminescent quantum dots (QDs) selectively coupled through an amine or thiol linkage to peptide ligands targeted to G-protein coupling receptors (GPCRs) and demonstrate their utility in whole-cell and single-molecule imaging. We utilized a low molecular weight (∼1200 Da) diblock copolymer with acrylic acids as hydrophilic segments and amido-octyl side chains as hydrophobic segments for facile encapsulation of QDs (QD 595 and QD 514) in aqueous solutions. As proof of principle, these QDs were targeted to the human melanocortin receptor (hMCR) by chemoselectively coupling the polymer-coated QDs to either a hexapeptide analog of R-melanocyte stimulating hormone or to the highly potent MT-II ligand containing a unique amine. To label QDs with ligands lacking orthogonal amines, the diblock copolymers were readily modified with water-soluble trioxa-tridecanediamine to incorporate freely available amine functionalities. The amine-functionalized QDs underwent facile reaction with the bifunctional linker NHSmaleimide, allowing for covalent coupling to GPCR-targeted ligands modified with unique cysteines. We demonstrate the utility of these maleimide-functionalized QDs by covalent conjugation to a highly potent Deltorphin-II analog that allowed for selective cell-surface and single-molecule imaging of the human δ-opioid receptor (hDOR).
Biofunctional quantum dots as fluorescence probe for cell-specific targeting
Colloids and Surfaces B: Biointerfaces, 2014
We describe here the synthesis, characterization, bioconjugation, and application of water-soluble thioglycolic acid TGA-capped CdTe/CdS quantum dots (TGA-QDs) for targeted cellular imaging. Antihuman epidermal growth factor receptor 2 (HER2) antibodies were conjugated to TGA-QDs to target HER2-overexpressing cancer cells. TGA-QDs and TGA-QDs/anti-HER2 bioconjugates were characterized by fluorescence and UV-Vis spectroscopy, X-ray diffraction (XRD), hydrodynamic sizing, electron microscopy, and gel electrophoresis. TGA-QDs and TGA-QDs/anti-HER2 were incubated with cells to examine cytotoxicity, targeting efficiency, and cellular localization. The cytotoxicity of particles was measured using an MTT assay and the no observable adverse effect concentration (NOAEC), 50% inhibitory concentration (IC 50 ), and total lethal concentration (TLC) were calculated. To evaluate localization and targeting efficiency of TGA-QDs with or without antibodies, fluorescence microscopy and flow cytometry were performed. Our results indicate that antibody-conjugated TGA-QDs are well-suited for targeted cellular imaging studies.
Understanding Biology Using Peptides
Semiconductor quantum dots have been used for labeling many biomacromolecules and small molecules, but it remains a challenge to couple it with short active peptides that play critical roles in many physiological processes. Several binding methods for QDs and short peptides have been reported, but all with some limitations in amino acid sequence. In this paper, we report a method for synthesis of quantum dots labeled short peptides that is appropriate to any short peptide. The quantum dots (CdTe)-labeled short peptides were verified and characterized by RP-HPLC. The QDs-labeled peptides were applied to monitor the specific binding between two immune peptides and T cell surface receptors. The quantum dots-labeled immune peptides provide a powerful method for studying immunological functions of these peptides, and an effective strategy for monitoring their complex modulating processes in vivo.
Bioconjugate chemistry, 2011
We present a robust scheme for preparation of semiconductor quantum dots (QDs) and cognate partners in a conjugation ready format. Our approach is based on bis-aryl hydrazone bond formation mediated by aromatic aldehyde and hydrazinonicotinate acetone hydrazone (HyNic) activated peptide coated quantum dots. We demonstrate controlled preparation of antibody���QD bioconjugates for specific targeting of endogenous epidermal growth factor receptors in breast cancer cells and for single QD tracking of transmembrane ...