Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses (original) (raw)
Related papers
Environmental Pollution, 2014
The aim of this study was to estimate the bioavailability of essential (Zn, Cu) and non-essential metals (Cd, Pb) to the earthworm Lumbricus rubellus exposed to soils originating from a gradient of metal pollution in Southern Poland. Metal uptake and elimination kinetics were determined and related to soils properties. Experimental results were compared with tissue metal concentrations observed in earthworms from the studied transect. Cd and Pb were intensively accumulated by the earthworms, with very slow or no elimination. Their uptake rate constants, based on 0.01 M CaCl 2 -extractable concentrations in the soils, increased with soil pH. Internal concentrations of Cu and Zn were maintained by the earthworms at a stable level, suggesting efficient regulation of these metals by the animals. The estimated uptake and elimination kinetics parameters enabled fairly accurate prediction of metal concentrations reached within a life span of L. rubellus in nature.
Heavy metal concentrations in soil and earthworms in a floodplain grassland
Environmental Pollution, 2005
We determined accumulated heavy metal concentrations (Cd, Pb, Cu, Zn) of earthworms in moderately contaminated floodplain soils. Both soil and mature earthworms were sampled before and after flooding and earthworm species were identified to understand species specific differences in bioconcentration. Accumulated metal concentrations in floodplain earthworms differed before and after flooding. Differences in uptake and elimination mechanisms, in food choice and living habitat of the different earthworm species and changes in speciation of the heavy metals are possible causes for this observation. Regression equations taken from literature, that relate metal accumulation by earthworms in floodplains as a function of metal concentration in soil, performed well when all species specific data were combined in an average accumulation, but did not address differences in accumulation between earthworm species.
Accumulation of heavy metals by enchytraeids and earthworms in a floodplain
European Journal of Soil Biology, 2006
The river floodplain 'Afferdense and Deestsche Waarden' (ADW) in The Netherlands is diffusely contaminated with several heavy metals. It is, however, unclear whether this mixed contamination exerts any adverse ecotoxicological effects. In November 2000 and May 2001 a field survey was conducted in two areas in the ADW to collect a wide range of data concerning contamination levels, bioavailability, enchytraeids and earthworms and abiotic factors such as lutum and organic matter content, cation exchange capacity (CEC) and soil nutrient concentrations. Earthworms and enchytraeids were also analyzed for heavy metal content. At both sites arsenic and zinc were present in soil at relatively high concentrations (above the Dutch intervention value). In the two areas, both enchytraeids and earthworms accumulated metals. Fridericia ulrikae accumulated more cadmium than Enchytraeus buchholzi and Henlea perpusilla. The earthworm Lumbricus rubellus accumulated larger concentrations of Cr, Cu and Pb than Aporrectodea caliginosa and Allolobophora chlorotica. Dietary, physiological and behavioral characteristics may have contributed to these differences.
2016
Wetlands play important ecological and life-supporting roles. Therefore, appropriate and adequate wetland biomonitoring options should be available. This study investigated the burrowing and survival responses of a wetland earthworm (Libyodrilus violaceus) to heavy metal (Zn, Pb, Cd) polluted soil. The worms were exposed to soils contaminated with graduated levels of heavy metals in the laboratory and their responses evaluated following standard procedures. The median lethal concentration (LC 50) values for Zn, Pb, and Cd obtained from the study were 520.06 mg/kg, 1551.55 mg/kg, and 706.66 mg/kg soil respectively. The mixture of Zn and Cd gave a 14-day LC 50 value of 626.12 mg/kg soil, while the combined action of Zn, Pb and Cd gave a 14-day LC 50 value of 1,273.47 mg/kg soil. The species also showed delayed burrowing responses to these metals in individual and combined concentrations. These results suggest that L. violaceus could be a candidate for assessing the heavy metal state of tropical wetland soils.
Heavy Metal Concentrations in Earthworms From Soil Amended with Sewage Sludge
Journal of Environmental Quality, 1982
Metal concentrations in soil may be elevated considerably when metal‐laden sewage sludge is spread on land. Metals in earthworms (Lumbricidae) from agricultural fields amended with sewage sludge and from experimental plots were examined to determine if earthworms are important in transferring metals in soil to wildlife. Earthworms from four sites amended with sludge contained significantly (P < 0.05) more Cd (12 times), Cu (2.4 times), Zn (2.0 times), and Pb (1.2 times) than did earthworms from control sites, but the concentrations detected varied greatly and depended on the particular sludge application. Generally, Cd and Zn were concentrated by earthworms relative to soil, and Cu, Pb, and Ni were not concentrated. Concentrations of Cd, Zn, Cu, and Pb in earthworms were correlated (P < 0.05) with those in soil. The ratio of the concentration of metals in earthworms to the concentration of metals in soil tended to be lower in contaminated soil than in clean soil. Concentration...
Environmental Pollution, 2013
Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris).
Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E. fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1–10 g C kg−1), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150–13,100 mg Pb kg−1, 2970–53,400 mg Zn kg−1). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils.