Analytical models of composite material drilling (original) (raw)
Related papers
Drilling of composite structures
Composite Structures, 2001
Structural parts made of composites have frequently to be drilled in the aircraft industry. However, little is know about the interacting conditions between the drilling tool and the material, which may be multi-type and multi-size. This study proposes a model which links the axial penetration of the drill bit to the conditions of delamination (crack opening mode I) of the last few plies. Several types of tool/material contact conditions were analyzed and were compared with experimental measurements, and with a model taken from the literature. Our study shows a close correlation between experiment and calculation when the thrust force of the drill is modeled by taking into account the geometrical nature of the contact between the tool and a laminate composite material. Ó
Composites Part B: Engineering, 2017
Fibre reinforced polymer (FRP) composite laminates are employed in many industrial applications due to their attractive mechanical and structural properties. Machining operation, such as drilling of FRP laminates, plays a significant role in the assembly of parts in aircraft and spacecraft production. Among other production bottlenecks, drilling-induced delamination remains a major defect which adversely affects the quality of assembly parts. An efficient strategy in preventing this problem is the calculation of the critical thrust force above which delamination is initiated. Therefore, in this study, a new analytical model is proposed to predict the critical thrust force for delamination. Unlike the general models in the literature which derived only mode I strain energy release rate based on the assumption of classical laminate plate theory (CLPT) combined with linear elastic fracture mechanics (LEFM) mode I considerations in the elliptic delamination zone, the proposed analytical model is derived based on first-order shear deformation theory (FSDT) and accounts for mode I and mode II strain energy release rates in the delamination zone. This strategy allows to activate mixed mode criteria for delamination initiation which is a valid assumption for laminates with layers of different orientations. The present model is partly derived for general laminates subject to distributed loading and further extended to cross-ply laminate sequence subject to a mixed load condition. The results show that the effect of shear deformation in the prediction of the critical thrust force is influential with increasing ply thickness and the effect of chisel edge on shear deformation is more profound in the distributed load regime.
Comparative analysis of drills for composite laminates
Journal of Composite Materials, 2012
The characteristics of carbon fibre reinforced plastics allow a very broad range of uses. Drilling is often necessary to assemble different components, but this can lead to various forms of damage, such as delamination which is the most severe. However, a reduced thrust force can decrease the risk of delamination. In this work, two variables of the drilling process were compared: tool material and geometry, as well as the effect of feed rate and cutting speed. The parameters that were analysed include: thrust force, delamination extension and mechanical strength through open-hole tensile test, bearing test and flexural test on drilled plates. The present work shows that a proper combination of all the factors involved in drilling operations, like tool material, tool geometry and cutting parameters, such as feed rate or cutting speed, can lead to the reduction of delamination damage and, consequently, to the enhancement of the mechanical properties of laminated parts in complex structures, evaluated by open-hole, bearing or flexural tests.
Optimization for drilling process of metal-composite aeronautical structures
Science and Engineering of Composite Materials, 2021
Metal-composite laminates and joints are applied in aircraft manufacturing and maintenance (repairing) using aluminum alloys (AA) and glass fiber-reinforced polymer (GFRP). In these applications, drilling has a prominent place due to its vast application in aeronautical structures’ mechanical joints. Thus, this study presents the influence of uncoated carbide drills (85C, 86C, H10N), cutting speeds (v c = 20, 40, and 60 m min−1), and feed rates (f = 0.05, 0.15, and 0.25 mm rev−1) on delamination factor, thrust force ( F t {F}_{\text{t}} ), and burr formation in dry drilling metal-composite laminates and joints (AA2024/GFRP/AA2024). Experiments were performed, analyzed, and optimized using the Box–Behnken statistical design. Microscopic digital images for delamination evaluation, piezoelectric dynamometer for thrust force acquisition, and burr analysis were considered. The major finding was that the thrust force during drilling depends significantly on the feed rate. Another signific...
Critical thrust and feed prediction models in drilling of composite laminates
Composite Structures, 2016
Drilling induced delamination has been recognized as a major problem during drilling of composite materials. The size of the delamination zone has been shown to be related to the thrust force. However, thrust force strongly depends on drilling parameters and it is not possible to control it directly. Thrust force can be correlated with feed rate, the most important parameter affecting thrust force. This paper presents analytical models to predict critical thrust force and feed rate at the onset of delamination. The model proposed is based on elastic fracture mechanics, classical plate bending theory and the mechanics of oblique cutting. An advantage of this model over other proposed models is that to avoid delamination via thrust monitoring, the thrust force will need to be sensed and used in adaptive control, while optimal feed rate can be used directly in CNC command generation to maximize productivity.
Composite materials have become valuable construction materials in aerospace, defense and in recent years in automotive industry. The advantage of composite materials over conventional materials stems largely from their higher specific strength, stiffness and fatigue characteristics. Composite components are joined by mechanical fasteners, accurate, precise high quality holes need to be drilled to ensure proper and durable assemblies. Drilling of composite materials causes several damages, such us: delamination, fibre-pull out, edge chipping, uncut fibers and others. Delamination is a major problem associated with drilling fiber reinforced composite materials. It causes poor assembly tolerance, reduces structural integrity of material and the potential for long term performance deterioration. The thrust force has been cited as main cause of delamination. In this paper the objective was to establish correlation between cutting parameters and thrust force, drilling torque and delamination. Drilling tests were carried out on carbon epoxy composite material using three different drills, HSS-Co twist drill, Multi Constructional twist drill and "Brad & Spur" drill. The data have been processed by the "DesignExpert" software package which generated the mathematical models.
Finite Element Analysis of Drilling of Carbon Fibre Reinforced Composites
Applied Composite Materials
Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling.
Mechanics of delamination-free drilling in polymer matrix composite laminates: A review
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020
There is a critical limit of thrust force during drilling operation in a composite laminate below which no delamination takes place, which is known as the “critical thrust force”. In this paper, various critical thrust force models have been discussed in detail for circular- and elliptical-shaped delaminations around the drilled hole. Critical thrust force models for circular-shaped delamination for isotropic composite laminates and anisotropic composite laminates for different loadings like point load, uniformly distributed load, triangular load, and their combinations using different drill geometries have been discussed. With elliptical-shaped delamination, critical thrust force models for anisotropic composite laminates are discussed for: point load, uniformly distributed load, combined point plus distributed load, and point load for antisymmetric composite laminates. At several locations, graphs have been created to illustrate the dependence of various parameters on the critical...
Drilling tool geometry evaluation for reinforced composite laminates
Composite …, 2010
In this work, a comparative study on different drill point geometries and feed rate for composite laminates drilling is presented. For this goal, thrust force monitoring during drilling, hole wall roughness measurement and delamination extension assessment after drilling is accomplished. Delamination is evaluated using enhanced radiography combined with a dedicated computational platform that integrates algorithms of image processing and analysis. An experimental procedure was planned and consequences were evaluated. Results show that a cautious combination of the factors involved, like drill tip geometry or feed rate, can promote the reduction of delamination damage.
Metals
Fibre metal laminates (FML) are significantly adopted in the aviation industry due to their convenient combination of specific strength, impact resistance and ductility. Drilling of such materials is a regular pre-requisite which enables assembly operations, typically through rivet joining. However, the hole-making operation is of increased complexity due to the dissimilarity of the involved materials, often resulting in defects (i.e., material interface delamination), which can significantly compromise the otherwise excellent fatigue strength. This work explores the potential of three different drill geometries, operating under variable cutting speeds and feeds on CFRP-AA laminates. In addition, the usage of sacrificial back support is investigated and cutting load, surface roughness and delamination extension are examined. In order to predict delamination occurrence, ADCB tests are performed, enabling the calculation of fracture energy threshold. Drill geometry presents a very sig...