The Application of One Health Approaches to Henipavirus Research (original) (raw)

Understanding the interaction between henipaviruses and their natural host, fruit bats: Paving the way toward control of highly lethal infection in humans

International Reviews of Immunology, 2017

Hendra virus and Nipah virus (NiV) are highly pathogenic zoonotic paramyxoviruses, from henipavirus genus, that have emerged in late 1990s in Australia and SouthEast Asia, respectively. Since their initial identification, numerous outbreaks have been reported, affecting both domestic animals and humans, and multiple rounds of person-to-person NiV transmission were observed. Widely distributed fruit bats from Pteropodidae family were found to be henipavirus natural reservoir. Numerous studies have reported henipavirus seropositivity in pteropid bats, including bats in Africa, thus expanding notably the geographic distribution of these viruses. Interestingly, henipavirus infection in bats seems to be asymptomatic, in contrast to severe disease induced in numerous other mammals. Unique among the mammals by their ability to fly, these intriguing animals are natural reservoir for many other emerging and remerging viruses highly pathogenic for humans. This feature, combined with absence of clinical symptoms, has attracted the interest of scientific community to virus-bat interactions. Therefore, several bat genomes were sequenced and particularities of the bat immune system have been intensively analyzed during the last decade to understand their coexistence with viruses in the absence of disease. The peculiarities in inflammasome activation, a constitutive expression of interferon alpha, and some differences in adaptive immunity have been recently reported in fruit bats. Studies on virus-bat interactions have thus emerged as an exciting novel area of research that should shed new light on the mechanisms that regulate viral infection and may allow development of novel therapeutic approaches to control this highly lethal emerging infectious disease in humans.

Evidence for henipavirus spillover into human populations in Africa

Nature Communications, 2014

Zoonotic transmission of lethal henipaviruses (HNVs) from their natural fruit bat reservoirs to humans has only been reported in Australia and South/Southeast Asia. However, a recent study discovered numerous HNV clades in African bat samples. To determine the potential for HNV spillover events among humans in Africa, here we examine well-curated sets of bat (Eidolon helvum, n ¼ 44) and human (n ¼ 497) serum samples from Cameroon for Nipah virus (NiV) cross-neutralizing antibodies (NiV-X-Nabs). Using a vesicular stomatitis virus (VSV)based pseudoparticle seroneutralization assay, we detect NiV-X-Nabs in 48% and 3-4% of the bat and human samples, respectively. Seropositive human samples are found almost exclusively in individuals who reported butchering bats for bushmeat. Seropositive human sera also neutralize Hendra virus and Gh-M74a (an African HNV) pseudoparticles, as well as live NiV. Butchering bat meat and living in areas undergoing deforestation are the most significant risk factors associated with seropositivity. Evidence for HNV spillover events warrants increased surveillance efforts.

Pteropid Bats are Confirmed as the Reservoir Hosts of Henipaviruses: A Comprehensive Experimental Study of Virus Transmission

American Journal of Tropical Medicine and Hygiene, 2011

Bats of the genus Pteropus have been identified as the reservoir hosts for the henipaviruses Hendra virus (HeV) and Nipah virus (NiV). The aim of these studies was to assess likely mechanisms for henipaviruses transmission from bats. In a series of experiments, Pteropus bats from Malaysia and Australia were inoculated with NiV and HeV, respectively, by natural routes of infection. Despite an intensive sampling strategy, no NiV was recovered from the Malaysian bats and HeV was reisolated from only one Australian bat; no disease was seen. These experiments suggest that opportunities for henipavirus transmission may be limited; therefore, the probability of a spillover event is low. For spillover to occur, a range of conditions and events must coincide. An alternate assessment framework is required if we are to fully understand how this reservoir host maintains and transmits not only these but all viruses with which it has been associated.

Henipavirus infection in fruit bats (Pteropus gigantous), India.(DISPATCHES)

Emerging Infectious Diseases, 2008

We tested 41 bats for antibodies against Nipah and Hendra viruses to determine whether henipaviruses circulate in pteropid fruit bats (Pteropus giganteus) in northern India. Twenty bats were seropositive for Nipah virus, which suggests circulation in this species, thereby extending the known distribution of henipaviruses in Asia westward by >1,000 km.

Henipavirus Infection in Fruit Bats ( Pteropus giganteus ), India

Emerging Infectious Diseases, 2008

We tested 41 bats for antibodies against Nipah and Hendra viruses to determine whether henipaviruses circulate in pteropid fruit bats (Pteropus giganteus) in northern India. Twenty bats were seropositive for Nipah virus, which suggests circulation in this species, thereby extending the known distribution of henipaviruses in Asia westward by >1,000 km.

Henipavirus Neutralising Antibodies in an Isolated Island Population of African Fruit Bats

PLoS ONE, 2012

Isolated islands provide valuable opportunities to study the persistence of viruses in wildlife populations, including population size thresholds such as the critical community size. The straw-coloured fruit bat, Eidolon helvum, has been identified as a reservoir for henipaviruses (serological evidence) and Lagos bat virus (LBV; virus isolation and serological evidence) in continental Africa. Here, we sampled from a remote population of E. helvum annobonensis fruit bats on Annobó n island in the Gulf of Guinea to investigate whether antibodies to these viruses also exist in this isolated subspecies. Henipavirus serological analyses (Luminex multiplexed binding and inhibition assays, virus neutralisation tests and western blots) and lyssavirus serological analyses (LBV: modified Fluorescent Antibody Virus Neutralisation test, LBV and Mokola virus: lentivirus pseudovirus neutralisation assay) were undertaken on 73 and 70 samples respectively. Given the isolation of fruit bats on Annobó n and their lack of connectivity with other populations, it was expected that the population size on the island would be too small to allow persistence of viruses that are thought to cause acute and immunising infections. However, the presence of antibodies against henipaviruses was detected using the Luminex binding assay and confirmed using alternative assays. Neutralising antibodies to LBV were detected in one bat using both assays. We demonstrate clear evidence for exposure of multiple individuals to henipaviruses in this remote population of E. helvum annobonensis fruit bats on Annobó n island. The situation is less clear for LBV. Seroprevalences to henipaviruses and LBV in Annobó n are notably different to those in E. helvum in continental locations studied using the same sampling techniques and assays. Whilst cross-sectional serological studies in wildlife populations cannot provide details on viral dynamics within populations, valuable information on the presence or absence of viruses may be obtained and utilised for informing future studies.

INVESTIGATING RISKS TO AUSTRALIA OF EMERGENT HENIPAVIRUSES

To investigate the risks to Australia of emergent henipaviruses, studies were conducted with the aim of: (1) determining the occurrence of henipaviruses in targeted fruit bat populations in northern Australia, Papua New Guinea, East Timor and Indonesia; investigating the extent and nature of contact between fruit bat populations in Australia with populations in Papua New Guinea, East Timor and Indonesia using satellite telemetry;

Henipavirus RNA in African Bats

PLOS One, 2009

Background: Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruiteating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat.