Roles of Conformational and Positional Adaptability in Structure-Based Design of TMC125-R165335 (Etravirine) and Related Non-nucleoside Reverse Transcriptase Inhibitors That Are Highly Potent and Effective against Wild-Type and Drug-Resistant HIV-1 Variants (original) (raw)
Related papers
Progress in Biophysics & Molecular Biology, 2005
Drug resistance is a key cause of failure for treatment of HIV infection. The efficacy of non-nucleoside reverse transcriptase inhibiting (NNRTI) drugs is impaired by rapid emergence of drug-resistance mutations. A multidisciplinary effort led to the discovery of the potent NNRTIs dapivirine and etravirine, both of which are diarylpyrimidine (DAPY) derivatives. Systematic structural and molecular modeling studies of HIV-1 reverse transcriptase (RT)/NNRTI complexes revealed different modes of inhibitor binding, and some of the DAPY inhibitors can bind to RT in different conformations. The torsional flexibility (''wiggling'') of the inhibitors can generate numerous conformational variants and the compactness of the inhibitors permits significant repositioning and reorientation (translation and rotation) within the pocket (''jiggling''). Such adaptations appear to be critical for the ability of the diarylpyrimidine NNRTIs to retain their potency against a wide range of drug-resistant HIV-1 RTs. Exploitation of inhibitor conformational flexibility (such as torsional flexibility about strategically located chemical bonds) ARTICLE IN PRESS www.elsevier.com/locate/pbiomolbio 0079-6107/$ -see front matter r (E. Arnold).
Proceedings of the National Academy of Sciences, 2008
TMC278 is a diarylpyrimidine (DAPY) nonnucleoside reverse transcriptase inhibitor (NNRTI) that is highly effective in treating wild-type and drug-resistant HIV-1 infections in clinical trials at relatively low doses (ϳ25-75 mg/day). We have determined the structure of wild-type HIV-1 RT complexed with TMC278 at 1.8 Å resolution, using an RT crystal form engineered by systematic RT mutagenesis. This highresolution structure reveals that the cyanovinyl group of TMC278 is positioned in a hydrophobic tunnel connecting the NNRTI-binding pocket to the nucleic acid-binding cleft. The crystal structures of TMC278 in complexes with the double mutant K103N/Y181C (2.1 Å) and L100I/K103N HIV-1 RTs (2.9 Å) demonstrated that TMC278 adapts to bind mutant RTs. In the K103N/Y181C RT/TMC278 structure, loss of the aromatic ring interaction caused by the Y181C mutation is counterbalanced by interactions between the cyanovinyl group of TMC278 and the aromatic side chain of Y183, which is facilitated by an ϳ1.5 Å shift of the conserved Y183MDD motif. In the L100I/K103N RT/ TMC278 structure, the binding mode of TMC278 is significantly altered so that the drug conforms to changes in the binding pocket primarily caused by the L100I mutation. The flexible binding pocket acts as a molecular ''shrink wrap'' that makes a shape complementary to the optimized TMC278 in wild-type and drug-resistant forms of HIV-1 RT. The crystal structures provide a better understanding of how the flexibility of an inhibitor can compensate for drug-resistance mutations.
Journal of Medicinal Chemistry, 2005
In the treatment of AIDS, the efficacy of all drugs, including non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT), has been limited by the rapid appearance of drug-resistant viruses. Lys103Asn, Tyr181Cys, and Tyr188Leu are some of the most common RT mutations that cause resistance to NNRTIs in the clinic. We report X-ray crystal structures for RT complexed with three different pyridinone derivatives, R157208, R165481, and R221239, at 2.95, 2.9, and 2.43 Å resolution, respectively. All three ligands exhibit nanomolar or subnanomolar inhibitory activity against wild-type RT, but varying activities against drugresistant mutants. R165481 and R221239 differ from most NNRTIs in that binding does not involve significant contacts with Tyr181. These compounds strongly inhibit wild-type HIV-1 RT and drug-resistant variants, including Tyr181Cys and Lys103Asn RT. These properties result in part from an iodine atom on the pyridinone ring of both inhibitors that interacts with the main-chain carbonyl oxygen of Tyr188. An acrylonitrile substituent on R165481 substantially improves the activity of the compound against wild-type RT (and several mutants) and provides a way to generate novel inhibitors that could interact with conserved elements of HIV-1 RT at the polymerase catalytic site. In R221239, there is a flexible linker to a furan ring that permits interactions with Val106, Phe227, and Pro236. These contacts appear to enhance the inhibitory activity of R221239 against the HIV-1 strains that carry the Val106Ala, Tyr188Leu, and Phe227Cys mutations.
Journal of Medicinal Chemistry, 2009
Clustering of 99 available X-ray crystal structures of HIV-1 reverse transcriptase (RT) at the flexible non-nucleoside inhibitor binding pocket (NNIBP) provides information about features of the conformational landscape for binding non-nucleoside inhibitors (NNRTIs), including effects of mutation and crystal forms. The ensemble of NNIBP conformations is separated into eight discrete clusters based primarily on the position of the functionally important primer grip, the displacement of which is believed to be one of the mechanisms of inhibition of RT. Two of these clusters are populated by structures in which the primer grip exhibits novel conformations that differ from the predominant cluster by over 4 Å and are induced by the unique inhibitors capravirine and rilpivirine/TMC278. This work identifies a new conformation of the NNIBP that may be used to design NNRTIs. It can also be used to guide more complete exploration of the NNIBP free energy landscape using advanced sampling techniques.
Conformational preferences of non-nucleoside HIV1 reverse transcriptase inhibitors
Tetrahedron, 2001
AbstractÐThe non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTI) are a class of compounds that present a common butter¯y-like conformation. In the present study, the intramolecular factors that contribute to this conformation were studied. Hydrogen bonds have been analysed by geometric and electrostatic criteria. Only the former allow the elucidation of the relative intensity of hydrogen bonds. The interaction between aromatic rings may contribute to the preferential conformation. For some other NNRTI, it is not possible to explain the butter¯y-like conformation on the basis of hydrogen bond and aromatic interactions. q . Structure obtained through the DFT method for molecule (2).
Journal of Molecular Biology, 1998
The second generation Hoechst-Bayer non-nucleoside inhibitor, HBY 097 (S-4-isopropoxycarbonyl-6-methoxy-3-(methylthiomethyl)-3,4-dihydroquinoxalin-2(1H)-thione), is an extremely potent inhibitor of HIV-1 reverse transcriptase (RT) and of HIV-1 infection in cell culture. HBY 097 selects for unusual drug-resistance mutations in HIV-1 RT (e.g. Gly190Glu) when compared with other non-nucleoside RT inhibitors (NNRTIs), such as nevirapine, a-APA and TIBO. We have determined the structure of HBY 097 complexed with wild-type HIV-1 RT at 3.1 A Ê resolution. The HIV-1 RT/HBY 097 structure reveals an overall inhibitor geometry and binding mode differing signi®cantly from RT/NNRTI structures reported earlier, in that HBY 097 does not adopt the usual butter¯y-like shape. We have determined the structure of the Tyr188Leu HIV-1 RT drug-resistant mutant in complex with HBY 097 at 3.3 A Ê resolution. HBY 097 binds to the mutant RT in a manner similar to that seen in the wild-type RT/HBY 097 complex, although there are some repositioning and conformational alterations of the inhibitor. Conformational changes of the structural elements forming the inhibitor-binding pocket, including the orientation of some side-chains, are observed. Reduction in the size of the 188 side-chain and repositioning of the Phe227 side-chain increases the volume of the binding cavity in the Tyr188Leu HIV-1 RT/HBY 097 complex. Loss of important protein-inhibitor interactions may account for the reduced potency of HBY 097 against the Tyr188Leu HIV-1 RT mutant. The loss of binding energy may be partially offset by additional contacts resulting from conformational changes of the inhibitor and nearby amino acid residues. This would suggest that inhibitor¯exibility can help to minimize drug resistance.
Rapid generation of drug-resistant mutations in HIV-1 reverse transcriptase (RT), a prime target for anti-HIV therapy, poses a major impediment to effective anti-HIV treatment. Our previous efforts have led to the development of two novel non-nucleoside reverse transcriptase inhibitors (NNRTIs) with piperidine-substituted thiophene[3,2-d]pyrimidine scaffolds, compounds K-5a2 and 25a, which demonstrate highly potent anti-HIV-1 activities and improved resistance profiles compared with etravirine and rilpivirine, respectively. Here, we have determined the crystal structures of HIV-1 wild-type (WT) RT and seven RT variants bearing prevalent drug-resistant mutations in complex with K-5a2 or 25a at~2 Å resolution. These high-resolution structures illustrate the molecular details of the extensive hydrophobic interactions and the network of main chain hydrogen bonds formed between the NNRTIs and the RT inhibitor-binding pocket, and provide valuable insights into the favorable structural features that can be employed for designing NNRTIs that are broadly active against drug-resistant HIV-1 variants.
Proceedings of The National Academy of Sciences, 2008
TMC278 is a diarylpyrimidine (DAPY) nonnucleoside reverse transcriptase inhibitor (NNRTI) that is highly effective in treating wild-type and drug-resistant HIV-1 infections in clinical trials at relatively low doses (ϳ25-75 mg/day). We have determined the structure of wild-type HIV-1 RT complexed with TMC278 at 1.8 Å resolution, using an RT crystal form engineered by systematic RT mutagenesis. This highresolution structure reveals that the cyanovinyl group of TMC278 is positioned in a hydrophobic tunnel connecting the NNRTI-binding pocket to the nucleic acid-binding cleft. The crystal structures of TMC278 in complexes with the double mutant K103N/Y181C (2.1 Å) and L100I/K103N HIV-1 RTs (2.9 Å) demonstrated that TMC278 adapts to bind mutant RTs. In the K103N/Y181C RT/TMC278 structure, loss of the aromatic ring interaction caused by the Y181C mutation is counterbalanced by interactions between the cyanovinyl group of TMC278 and the aromatic side chain of Y183, which is facilitated by an ϳ1.5 Å shift of the conserved Y183MDD motif. In the L100I/K103N RT/ TMC278 structure, the binding mode of TMC278 is significantly altered so that the drug conforms to changes in the binding pocket primarily caused by the L100I mutation. The flexible binding pocket acts as a molecular ''shrink wrap'' that makes a shape complementary to the optimized TMC278 in wild-type and drug-resistant forms of HIV-1 RT. The crystal structures provide a better understanding of how the flexibility of an inhibitor can compensate for drug-resistance mutations.
Http Dx Doi Org 10 1080 07391102 2003 10506915, 2012
A crucial step in the replication of HIV-1 is the conversion of its single-stranded RNA to double-stranded DNA, which is catalyzed by the virally encoded reverse transcriptase (RT). The latter is therefore a key target for the development of anti-HIV drugs. Currently approved anti-RT drugs fall into two main classes: (i) nucleoside analog inhibitors which are incorporated into the primer strand in their metabolically activated triphosphate forms, causing termination of DNA synthesis due to their 3´-deoxy configuration and (ii) the non-nucleoside inhibitors (NNIs), which are generally specific for HIV-1 RT and bind at an allosteric site approximately 10 Å from the active site causing a displacement of the catalytic aspartate residues. The socalled "first generation" NNI drugs are generally susceptible to the effects of single-point mutations within RT, while more recent "second generation" NNIs, such as efavirenz, the carboxanilide UC-781 and certain quinoxalines demonstrate much greater resilience to mutations in RT. The crystal structures of the complexes of wild type and mutant RTs with first and second generation NNIs have shown that, for an inhibitor to be potent as well as mutation resilient, it should (i) make hydrogen bonds with the main chain of RT, (ii) have a large number of interactions with RT and (iii) have the ability to rearrange and adapt to a mutated NNI pocket. Based on the crystal structures of the complexes of wild type RT and Tyr188Cys mutant of RT with UC-781, we have designed a small peptide inhibitor. Docking results on this peptide using AutoDock3.0 and SYBYL 6.8.1 indicate that the peptide has a potency comparable to that of UC-781 with a retention of activity against the Tyr188Cys mutant RT. The proposed, small peptide is seen to possess all the desirable features of a potent and mutation resilient inhibitor and is hence a potential lead compound.