Astrocytes and NG2-glia: what's in a name? (original) (raw)
Related papers
2016
Classically, the central nervous system (CNS) was considered to contain neurons and three main types of glial cells - astrocytes, oligodendrocytes, and microglia. Now, it has been clearly established that NG2-glia are a fourth glial cell type that are defined by their expression of the NG2 chondroitin sulfate proteoglycan (Cspg4). NG2-glia are also known as oligodendrocyte precursor cells (OPCs) and express the alpha receptor for platelet-derived growth factor (Pdgfra) as well as other oligodendrocyte lineage markers. NG2-glia are most numerous during CNS development when they are responsible for massive generation of oligodendrocytes, the myelin-forming cells of the CNS. A significant population of NG2-glia persist in the adult CNS, where they generate oligodendrocytes throughout life. A unique feature of NG2-glia is that they receive synaptic inputs from neurons and are able to respond rapidly to neurotransmission via their specific ion channel and receptor profiles. Moreover, syn...
Morphological and physiological interactions of NG2-glia with astrocytes and neurons
Journal of Anatomy, 2007
Models of central nervous system (CNS) function have historically been based on neurons and their synaptic contacts – the neuronal doctrine. This doctrine envisages glia as passive supportive cells. However, electrophysiological and imaging studies in brain slices show us that astrocytes, the most numerous cells in the brain, express a wide range of neurotransmitter receptors that are activated in response to synaptic activity. Furthermore, astrocytes communicate via calcium signals that are propagated over long distances by the release of ‘gliotransmitters’, the most abundant being adenosine triphosphate (ATP). This has led to the concept of the neuron–astroglial functional unit as the substrate of integration in the CNS. Recently, a novel glial cell type has been characterized by expression of the proteoglycan NG2. These NG2-glia receive presynaptic input from neurons and responds to neurotransmitters released at synapses. Now, studies on transgenic mice in which fluorescent proteins are specifically expressed by subclasses of glia are helping to address the question of where NG2-glia fit in the neuron–astroglial model of integrated brain function. NG2-glia, as well as astrocytes, have been shown to respond to neuronal and astroglial signals by raised intracellular calcium, which is a potential communications mechanism by which NG2-glia may be active partners in neuron–glial circuits. Moreover, a current concept of NG2-glia considers them to be ‘neural stem cells’ and an exciting prospect is that neuron–glial signalling may regulate the differentiation capacity of NG2-glia and their response to injury.
Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells
Journal of neurocytology
Cells that express the NG2 proteoglycan (NG2+ cells) comprise a unique population of glial cells in the central nervous system. While there is no question that some NG2+ cells differentiate into oligodendrocytes during development, the persistence of numerous NG2+ cells in the mature CNS has raised questions about their identity, relation to other CNS cell types, and functions besides their progenitor role. NG2+ cells also express the alpha receptor for platelet-derived growth factor (PDGF alphaR), a receptor that mediates oligodendrocyte progenitor proliferation during development. Antigenically, NG2+ cells are distinct from fibrous and protoplasmic astrocytes, resting microglia, and mature oligodendrocytes. Therefore, we propose the term polydendrocytes to refer to all NG2-expressing glial cells in the CNS parenchyma. This distinguishes them from the classical glial cell types and identifies them as the fourth major glial population in the CNS. Recent observations suggest that pol...
Properties of human astrocytes and NG2 glia
Glia
Since animal models are inevitable for medical research, information on species differences in glial cell properties is critical for successful translational research. Here, we review current knowledge about morphological and functional properties of human astrocytes and NG2 glial cells and compare these data with those obtained for the comparable cells in rodents. Morphological analyses of astrocytes in the neocortex of rodents versus humans have demonstrated clear differences. In contrast, the functional properties of astrocytes or NG2 glial cells in these species are surprisingly similar. However, these findings should be interpreted with caution, as so far
NG2 cells differentiate into astrocytes in cerebellar slices
Molecular and Cellular Neuroscience, 2009
Glia NG2 Astrocyte OPC Synantocyte Cerebellum NG2-glia are an abundant population of glial cells that have been considered by many to be oligodendrocyte progenitor cells (OPCs). However, growing evidence suggests that NG2-glia may also be capable of differentiating into astrocytes and neurons under certain conditions. Here, we have examined NG2-glia in cerebellar slices, using transgenic mice in which the astroglial marker glial specific protein (GFAP) drives expression of the reporter gene enhanced green fluorescent protein (EGFP). Immunolabelling for NG2 shows that NG2-glia and GFAP-EGFP astroglia are separate populations in most areas of the brain, although a substantial population of NG2-glia in the pons also express the GFAP-EGFP reporter. In the cerebellum, NG2glia did not express EGFP, either at postnatal day (P)12 or P29-30. We developed an organotypic culture of P12 cerebellar slices that maintain cytoarchitectural integrity of Purkinje neurons and Bergmann glia. In these cultures, BrdU labelling indicates that the majority of NG2-glia enter the cell cycle within 2 days in vitro (DIV), suggesting that NG2-glia undergo a 'reactive' response in cerebellar cultures. After 2 DIV NG2-glia began to express the astroglial reporter EGFP and in some cases the respective GFAP protein. However, NG2glia did not acquire phenotypic markers of neural stem cells or neurons. The results suggest that NG2-glia are not lineage restricted OPCs and are a potential source of astrocytes in the cerebellum.
Cytology and lineage of NG2-positive glia
2002
We present evidence that NG2+ glia are an integral part of an oligodendrocyte/synantocyte (OS) lineage stream the progenitors of which begin to produce both glial phenotypes at about birth. The NG2 CSPG is differentially distributed within the OS lineage, being expressed in progenitors and synantocytes but not in oligodendrocytes. All cells in the OS lineage, except the primordial stem cells, express O4. The oligodendrocyte line reacts with CD9, but synantocytes are CD9−. Nonetheless, synantocytes are morphologically complex and specialised glia which contact axolemma in myelinated fibres at nodes of Ranvier and synaptic terminals, and form >99% of all NG2+ glia in the adult CNS. Thus, the other NG2+ phenotype, the adult oligodendrocyte progenitor cell (AOPC), constitutes a small population of <1% of all NG2+ glia in the mature CNS. AOPC are a heterogeneous set of cells probably originating from multiple sources which, by definition, produce oligodendrocytes in the adult to replace loss after trauma, demyelination and normal 'wear and tear'. The definitive functions of synantocytes remain undefined.
NG2 Glia: Novel Roles beyond Re-/Myelination
Neuroglia, 2018
Neuron-glia antigen 2-expressing glial cells (NG2 glia) serve as oligodendrocyte progenitors during development and adulthood. However, recent studies have shown that these cells represent not only a transitional stage along the oligodendroglial lineage, but also constitute a specific cell type endowed with typical properties and functions. Namely, NG2 glia (or subsets of NG2 glia) establish physical and functional interactions with neurons and other central nervous system (CNS) cell types, that allow them to constantly monitor the surrounding neuropil. In addition to operating as sensors, NG2 glia have features that are expected for active modulators of neuronal activity, including the expression and release of a battery of neuromodulatory and neuroprotective factors. Consistently, cell ablation strategies targeting NG2 glia demonstrate that, beyond their role in myelination, these cells contribute to CNS homeostasis and development. In this review, we summarize and discuss the adv...
NG2 cells generate both oligodendrocytes and gray matter astrocytes
Development, 2007
NG2 glia constitute a fourth major glial cell type in the mammalian central nervous system (CNS) that is distinct from other cell types. Although circumstantial evidence suggests that some NG2 glia differentiate into oligodendrocytes, their in vivo fate has not been directly examined. We have used the bacterial artificial chromosome (BAC) modification technique to generate transgenic mice that express DsRed or Cre specifically in NG2-expressing (NG2+) cells. In NG2DsRedBAC transgenic mice, DsRed was expressed specifically in NG2+ cells throughout the postnatal CNS. When the differentiation potential of NG2+ cells in vitro was examined using DsRed+NG2+cells purified from perinatal transgenic brains, the majority of the cells either remained as NG2+ cells or differentiated into oligodendrocytes. In addition, DsRed+NG2+ cells also differentiated into astrocytes. The in vivo fate of NG2 glia was examined in mice that were double transgenic for NG2creBAC and the Cre reporter Z/EG. In the...
Astrocytes: Everything but the glue
Neuroimmunology and neuroinflammation
The current knowledge in neuroscience indicates that neural tissue has two major cell populations: neurons and glia (term derived from the Greek word for glue). Neuronal population is characterized by the capacity to produce action potentials, whereas glial cells are typically identified as the subordinate cell population of neurons. To date, this point of view has changed dramatically and growing evidence indicates that glial cells play a crucial role in normal mental functions and the pathogenesis of neurological diseases. Classically, glial cells include four major populations clearly discernible in the adult brain: astrocytes, oligodendrocytes, microglia cells and NG2 glia. Astrocytes, also referred as to astroglia, are by far the most abundant cell lineage in the adult brain. These cells are in close contact with several tissue components of the brain parenchyma including neurons, vasculature, extracellular matrix and other glial populations. Hence, the number and strategic pos...
Astroglia in neurological diseases
Future neurology, 2013
Astroglia encompass a subset of versatile glial cells that fulfill a major homeostatic role in the mammalian brain. Since any brain disease results from failure in brain homeostasis, astroglial cells are involved in many, if not all, aspects of neurological and/or psychiatric disorders. In this article, the roles of astrocytes as homeostatic cells in healthy and diseased brains are surveyed. These cells can mount the defence response to the insult of the brain, astrogliosis, when and where they display hypertrophy. Interestingly, astrocytes can alternatively display atrophy in some pathological conditions. Various pathologies, including Alexander and Alzheimer's diseases, amyotrophic lateral sclerosis, stroke and epilepsy, to mention a few, are discussed. Astrocytes could represent a novel target for medical intervention in the treatment of brain disorders.