GOMoDo: A GPCRs Online Modeling and Docking Webserver (original) (raw)
Related papers
BMC Bioinformatics, 2011
Background: G protein-coupled receptors (GPCRs) transduce a wide variety of extracellular signals to within the cell and therefore have a key role in regulating cell activity and physiological function. GPCR malfunction is responsible for a wide range of diseases including cancer, diabetes and hyperthyroidism and a large proportion of drugs on the market target these receptors. The three dimensional structure of GPCRs is important for elucidating the molecular mechanisms underlying these diseases and for performing structure-based drug design. Although structural data are restricted to only a handful of GPCRs, homology models can be used as a proxy for those receptors not having crystal structures. However, many researchers working on GPCRs are not experienced homology modellers and are therefore unable to benefit from the information that can be gleaned from such three-dimensional models. Here, we present a comprehensive database called the GPCR-SSFE, which provides initial homology models of the transmembrane helices for a large variety of family A GPCRs.
Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008
Nature Reviews Drug Discovery, 2009
| Recent breakthroughs in the determination of the crystal structures of G protein-coupled receptors (GPCRs) have provided new opportunities for structure-based drug design strategies targeting this protein family. With the aim of evaluating the current status of GPCR structure prediction and ligand docking, a community-wide, blind prediction assessment -GPCR Dock 2008 -was conducted in coordination with the publication of the crystal structure of the human adenosine A 2A receptor bound to the ligand ZM241385. Twenty-nine groups submitted 206 structural models before the release of the experimental structure, which were evaluated for the accuracy of the ligand binding mode and the overall receptor model compared with the crystal structure. This analysis highlights important aspects for success and future development, such as accurate modelling of structurally divergent regions and use of additional biochemical insight such as disulphide bridges in the extracellular loops.
Modern Homology Modeling of G-Protein Coupled Receptors: Which Structural Template to Use?
Journal of Medicinal Chemistry, 2009
The recent availability in the literature of new crystal structures of inactive G-protein coupled receptors (GPCRs) prompted us to study the extent to which these crystal structures constitute an advantage over the former prototypic rhodopsin template for homology modeling of the transmembrane (TM) region of human class A GPCRs. Our results suggest that better templates than those currently available are required by the majority of these GPCRs to generate homology models that are accurate enough for simple virtual screening aimed at computer-aided drug discovery. Thus, we investigated: 1) which class A GPCRs would have the highest impact as potential templates for homology modeling of other GPCRs, if their structures were solved; and 2) the extent to which multiple-template homology modeling (using all currently available GPCR crystal structures) provides an improvement over single-template homology modeling, as evaluated by the accuracy of rigid protein-flexible ligand docking on these models.
Homology model-assisted elucidation of binding sites in GPCRs
Methods in molecular biology (Clifton, N.J.), 2012
G protein-coupled receptors (GPCRs) are important mediators of cell signaling and a major family of drug targets. Despite recent breakthroughs, experimental elucidation of GPCR structures remains a formidable challenge. Homology modeling of 3D structures of GPCRs provides a practical tool for elucidating the structural determinants governing the interactions of these important receptors with their ligands. The working model of the binding site can then be used for virtual screening of additional ligands that may fit this site, for determining and comparing specificity profiles of related receptors, and for structure-based design of agonists and antagonists. The current review presents the protocol and enumerates the steps for modeling and validating the residues involved in ligand binding. The main stages include (a) modeling the receptor structure using an automated fragment-based approach, (b) predicting potential binding pockets, (c) docking known binders, (d) analyzing predicted...
Molecular docking simulations of fully flexible protein receptor (FFR) models are coming of age. In our studies, an FFR model is represented by a series of different conformations derived from a molecular dynamic simulation trajectory of the receptor. For each conformation in the FFR model, a docking simulation is executed and analyzed. An important challenge is to perform virtual screening of millions of ligands using an FFR model in a sequential mode since it can become computationally very demanding. In this paper, we propose a cloud-based web environment, called web Flexible Receptor Docking Workflow (wFReDoW), which reduces the CPU time in the molecular docking simulations of FFR models to small molecules. It is based on the new workflow data pattern called self-adaptive multiple instances (P-SaMIs) and on a middleware built on Amazon EC2 instances. P-SaMI reduces the number of molecular docking simulations while the middleware speeds up the docking experiments using a High Performance Computing (HPC) environment on the cloud. The experimental results show a reduction in the total elapsed time of docking experiments and the quality of the new reduced receptor models produced by discarding the nonpromising conformations from an FFR model ruled by the P-SaMI data pattern.
GPCRdb in 2018: adding GPCR structure models and ligands
Nucleic Acids Research
G protein-coupled receptors are the most abundant mediators of both human signalling processes and therapeutic effects. Herein, we report GPCRomewide homology models of unprecedented quality, and roughly 150 000 GPCR ligands with data on biological activities and commercial availability. Based on the strategy of 'Less model-more Xtal', each model exploits both a main template and alternative local templates. This achieved higher similarity to new structures than any of the existing resources, and refined crystal structures with missing or distorted regions. Models are provided for inactive, intermediate and active states-except for classes C and F that so far only have inactive templates. The ligand database has separate browsers for: (i) target selection by receptor, family or class, (ii) ligand filtering based on cross-experiment activities (min, max and mean) or chemical properties, (iii) ligand source data and (iv) commercial availability. SMILES structures and activity spreadsheets can be downloaded for further processing. Furthermore, three recent landmark publications on GPCR drugs, G protein selectivity and genetic variants have been accompanied with resources that now let readers view and analyse the findings themselves in GPCRdb. Altogether, this update will enable scientific investigation for the wider GPCR community. GPCRdb is available at http://www.gpcrdb.org.
Journal of Molecular Graphics and Modelling, 2011
G protein-coupled receptors (GPCRs) regulate a wide range of physiological functions and hold great pharmaceutical interest. Using the β 2 -Adrenergic receptor as a case study, this article explores the applicability of docking-based virtual screening to the discovery of GPCR ligands and defines methods intended to improve the screening performance. Our controlled computational experiments were performed on a compound dataset containing known agonists and blockers of the receptor as well as a large number of decoys. The screening based on the structure of the receptor crystallized in complex with its inverse agonist carazolol yielded excellent results, with a clearly delineated prioritization of ligands over decoys. Blockers generally were preferred over agonists; however agonists were also well distinguished from decoys. A method was devised to increase the screening yields by generating an ensemble of alternative conformations of the receptor that accounts for its flexibility. Moreover, a method was devised to improve the retrieval of agonists, based on the optimization of the receptor around a known agonist. Finally, the applicability of docking-based virtual screening also to homology models endowed with different levels of accuracy was proved. This last point is of uttermost importance, since crystal structures are available only for a limited number of GPCRs, and extends our conclusions to the entire superfamily. The outcome of this analysis definitely supports the application of computer-aided techniques to the discovery of novel GPCR ligands, especially in light of the fact that, in the near future, experimental structures are expected to be solved and become available for an ever increasing number of GPCRs.
G Protein Coupled Receptors - In Silico Drug Discovery and Design
Current Topics in Medicinal Chemistry, 2010
The application of structure-based in silico methods to drug discovery is still considered a major challenge, especially when the x-ray structure of the target protein is unknown. Such is the case with human G protein-coupled receptors (GPCRs), one of the most important families of drug targets, where in the absence of x-ray structures, one has to rely on in silico 3D models. We report repeated success in using ab initio in silico GPCR models, generated by the PREDICT method, for blind in silico screening when applied to a set of five different GPCR drug targets. More than 100,000 compounds were typically screened in silico for each target, leading to a selection of <100 ''virtual hit'' compounds to be tested in the lab. In vitro binding assays of the selected compounds confirm high hit rates, of 12-21% (full dose-response curves, K i < 5 M). In most cases, the best hit was a novel compound (New Chemical Entity) in the 1-to 100-nM range, with very promising pharmacological properties, as measured by a variety of in vitro and in vivo assays. These assays validated the quality of the hits as lead compounds for drug discovery. The results demonstrate the usefulness and robustness of ab initio in silico 3D models and of in silico screening for GPCR drug discovery. modeling ͉ in silico screening ͉ structure-based G protein-coupled receptors (GPCRs) are membraneembedded proteins, responsible for communication between the cell and its environment (1). As a consequence, many major diseases, such as hypertension, cardiac dysfunction, depression, anxiety, obesity, inflammation, and pain, involve malfunction of these receptors (2), making them among the most important drug targets for pharmacological intervention (3-5). Thus, whereas GPCRs are only a small subset of the human genome, they are the targets for Ϸ50% of all recently launched drugs (6). As targets of paramount importance, it is expected that drug discovery for GPCRs would benefit from the introduction of computational methodologies (7), especially as these methods can be used in conjunction with such experimental methods as high-throughput screening (8, 9), NMR, and crystallography (10). Unfortunately, GPCRs, like other membrane-embedded proteins, have characteristics that make their 3D structure extremely difficult to determine experimentally. To date, the only GPCR for which a 3D structure was determined by x-ray crystallography is bovine rhodopsin (11), which is unique among GPCRs in that its ligand, retinal, is covalently bound and that it responds to light rather than to ligand binding. Hence, in the case of GPCRs, the limited availability of structural data has forced the computational design of ligands to heavily rely on ligand-based techniques. Indeed, for many GPCRs, the natural ligand can provide a good starting point, leading to useful pharmacophore models that can be used for identifying lead structures with novel scaffolds (6). These methods have been successfully applied for the discovery of peptide agonists to the somatostatin receptor (12) and for the discovery of nonpeptidic antagonists to the urotensin II receptor (13). Nonetheless, structure-based drug discovery remains highly desirable for GPCRs. It is known that all GPCRs structurally consist of seven transmembrane (TM) helices joined together by three extracellular and three intracellular loops. Of particular interest to
Journal of Chemical Information and Modeling, 2012
The growing availability of novel structures for several G protein-coupled receptors (GPCRs) has provided new opportunities for structure-based drug design of ligands against this important class of targets. Here, we report a systematic analysis of the accuracy of docking small molecules into GPCR structures and homology models using both rigid receptor (Glide SP and Glide XP) and flexible receptor (Induced Fit Docking; IFD) methods. The ability to dock ligands into different structures of the same target (crossdocking) is evaluated for both agonist and inverse agonist structures of the A2A receptor and the β1and β2-adrenergic receptors. In addition, we have produced homology models for the β1-adrenergic, β2-adrenergic, D3 dopamine, H1 histamine, M2 muscarine, M3 muscarine, A2A adenosine, S1P1, κ-opioid, and C-X-C chemokine 4 receptors using multiple templates and investigated the ability of docking to predict the binding mode of ligands in these models. Clear correlations are observed between the docking accuracy and the similarity of the sequence of interest to the template, suggesting regimes in which docking can correctly identify ligand binding modes.