Duration of melatonin regulates seasonal plasticity in subtropical Indian weaver bird, Ploceus philippinus (original) (raw)
Related papers
Journal of Biological Rhythms, 2008
Avian behavior and physiology are temporally regulated by a complex circadian clock on both a daily and an annual basis. The circadian secretion of the hormone melatonin is a critical component of the regulation of circadian/daily processes in passerine birds, but there is little evidence that the gland regulates annual changes in primary reproductive function. Here it is shown that locomotor rhythms of house sparrows, Passer domesticus, which are made arrhythmic by either pinealectomy or maintenance in constant light, can be synchronized by daily administration of melatonin of different durations to simulate the melatonin profiles indicative of long and short photoperiods. Pinealectomized male sparrows maintained in constant darkness were entrained by both melatonin regimens. In both cases, testes were regressed and the song control nuclei were small. Intact male house sparrows maintained in constant light were also entrained to both melatonin regimens. However, sparrows that recei...
Hormones and Behavior, 2012
The present study investigated whether the circadian oscillators controlling rhythms in activity behavior and melatonin secretion shared similar functional relationship with the external environment. We simultaneously measured the effects of varying illuminations on rhythms of movement and melatonin levels in Indian weaver birds under synchronized (experiment 1) and freerunning (experiment 2) light conditions. In experiment 1, weaverbirds were exposed to 12 h light: 12 h darkness (12L:12D; L = 20 lx, D = 0.1 lx) for 2.5 weeks. Then, the illumination of the dark period was sequentially enhanced to 1-, 5-, 10-, 20and 100 lx at the intervals of about 2 to 4 weeks. In experiment 2, weaver birds similarly exposed for 2.5 weeks to 12L:12D (L = 100 lx; D = 0.1 lx) were released in constant dim light (LL dim , 0.1 lx) for 6 weeks. Thereafter, LL dim illumination was sequentially enhanced to 1-, 3-and 5 lx at the intervals of about 2 weeks. Whereas the activity of singly housed individuals was continuously recorded, the plasma melatonin levels were measured at two time of the day, once in each light condition. The circadian outputs in activity and melatonin were phase coupled with an inverse phase relationship: melatonin levels were low during the active phase (light period) and high during the inactive phase (dark period). This phase relationship continued in both the synchronized and freerunning states as long as circadian activity and melatonin oscillators subjectively interpreted synchronously the daily light environment, based on illumination intensity and/or photophase contrast, as the times of day and night. There were dissociations between the response of the activity rhythms and melatonin rhythms in light conditions when the contrast between day and night was much reduced (20:10 lx) or became equal. We suggest that circadian oscillators governing activity behavior and melatonin secretion in weaverbirds are phase coupled, but they seem to independently respond to environmental cues. This would probably explain the varying degree to which the involvement of pineal/melatonin in regulation of circadian behaviors has been found among different birds.
Journal of Experimental Zoology, 2002
In the present study, we asked the question whether physiological responses to day length of migratory redheaded bunting (Emberiza bruniceps) and nonmigratory Indian weaver bird (Ploceus philippinus) are mediated by the daily rhythm of melatonin. Melatonin was given either by injection at certain times of the day or as an implant. In series I experiments on the redheaded bunting, melatonin was administered by subcutaneous injections daily at zeitgeber time (ZT) 4 (morning) or ZT10 (evening) and by silastic capsules in photosensitive unstimulated buntings that were held in natural day lengths (NDL) at 27°N beginning from mid February, and in artificial day lengths (ADL, 12L:12D and 14L:10D). Melatonin did not affect the photoperiod-induced cycles of gain and loss in body mass and testicular growth-involution, but there was an effect on temporal phasing of the growth-involution cycle of testes in some groups. For example, the rate of testicular growth and development was faster in birds that received melatonin injection at ZT4 in NDL, and was slower in birds that carried melatonin implants both in NDL and ADL. In series II experiments on Indian weaver birds, melatonin was given in silastic capsules in the first week of September when they still had large gonads. Birds were exposed for 12 weeks to short day length (8L:16D; group 1), to long day length (eight weeks of 16L:8D and four weeks of 18L:6D; group 2), or to both short and long day lengths (four weeks each of 8L:16D, 16L:8D, and 18L:6D; groups 3 and 4). Whereas groups 1 to 3 carried melatonin or empty implant from the beginning, group 4 received one after four weeks. All birds underwent testicular regression during the first four weeks irrespective of the photoperiod they were exposed to or the implant they carried in, and there was a slight re-initiation of testis growth in some birds during the next eight weeks of long day lengths. However, with the exception of group 2, there was no difference in mean testis volume during the period of experiment between the melatonin- and empty-implant birds. The data on androgen-dependent beak color also supported the observations on testes. Together, these results do not support the idea that the daily rhythm of melatonin is involved in the photoperiodic time measurement in birds. However, there may still be a role of melatonin in temporal phasing of the annual reproductive cycle in birds. J. Exp. Zool. 292:277–286, 2002. © 2002 Wiley-Liss, Inc.
Journal of Ornithology, 2005
We investigated whether pineal is part of the circadian clock system which regulates circadian rhythms of activity and photosensitivity in the Indian weaver bird (Ploceus philippinus). Two experiments were performed. The first experiment examined the induction of testicular growth, and androgen-dependent beak pigmentation and luteinizing hormone (LH)-specific plumage coloration in pinealectomised (pinx) and sham-operated (sham) birds exposed to short day (8 h light: 16 h darkness, 8L:16D) and long day (16L:8D) for 9 months in the late breeding and early regressive phase (October), or the late regressive and preparatory phase (January) of the annual testicular cycle. As expected, short days were non-stimulatory, and long days stimulated testicular growth, beak pigmentation and plumage coloration. There was no difference in the response between pinx and sham birds subjected to short or long days in October, but the response was enhanced in pinx birds that were subjected to long day in January. In the second experiment circadian behavioral rhythms were studied (activity pattern in singly housed birds) in weaver birds first exposed at two different phases of the annual testicular cycle to a stimulatory photoperiod (12L:12D in preparatory phase or 13L:11D in early breeding phase) and then released into dim continuous light (LLdim). All birds showed synchronization to the light period before and after the pinealectomy; there was no difference in the response between pinx and sham birds. When released into LLdim, sham birds exhibited circadian rhythmicity continuously, whereas pinx birds lost circadian rhythmicity after some cycles. Considered together, these results suggest that circadian clock residing within the pineal gland regulates the circadian rhythm in activity, but not the circadian rhythm involved in photoperiodic induction of the Indian weaver bird.
Melatonin Stimulates the Release of Gonadotropin-Inhibitory Hormone by the Avian Hypothalamus
Endocrinology, 2010
Gonadotropin-inhibitory hormone (GnIH), a neuropeptide that inhibits gonadotropin synthesis and release, was first identified in quail hypothalamus. GnIH acts on the pituitary and GnRH neurons in the hypothalamus via GnIH receptor to inhibit gonadal development and maintenance. In addition, GnIH neurons express melatonin receptor and melatonin induces GnIH expression in the quail brain. Thus, it seems that melatonin is a key factor controlling GnIH neural function. In the present study, we investigated the role of melatonin in the regulation of GnIH release and the correlation of GnIH release with LH release in quail. Melatonin administration dose-dependently increased GnIH release from hypothalamic explants in vitro. GnIH release was photoperiodically controlled. A clear diurnal change in GnIH release was observed in quail, and this change was negatively correlated with changes in plasma LH concentrations. GnIH release during the dark period was greater than that during the light period in explants from quail exposed to long-day photoperiods. Conversely, plasma LH concentrations decreased during the dark period. In contrast to LD, GnIH release increased under short-day photoperiods, when the duration of nocturnal secretion of melatonin increases. These results indicate that melatonin may play a role in stimulating not only GnIH expression but also GnIH release, thus inhibiting plasma LH concentrations in quail. This is the first report describing the effect of melatonin on neuropeptide release.
Natural melatonin fluctuation and its minimally invasive simulation in the zebra finch
PeerJ, 2016
Melatonin is a key hormone in the regulation of circadian rhythms of vertebrates, including songbirds. Understanding diurnal melatonin fluctuations and being able to reverse or simulate natural melatonin levels are critical to investigating the influence of melatonin on various behaviors such as singing in birds. Here we give a detailed overview of natural fluctuations in plasma melatonin concentration throughout the night in the zebra finch. As shown in previous studies, we confirm that “lights off” initiates melatonin production at night in a natural situation. Notably, we find that melatonin levels return to daytime levels as early as two hours prior to the end of the dark-phase in some individuals and 30 min before “lights on” in all animals, suggesting that the presence of light in the morning is not essential for cessation of melatonin production in zebra finches. Thus, the duration of melatonin production seems not to be specified by the length of night and might therefore be...
Regulation of melatonin secretion in the pineal organ of the domestic duck – an in vitro study
Polish Journal of Veterinary Sciences, 2015
The aim of study was to determine the mechanisms regulating melatonin secretion in the pineal organs of 1-day-old and 9-month-old domestic ducks. The pineals were cultured in a superfusion system under different light conditions. Additionally, some explants were treated with norepinephrine.The pineal glands of 1-day-old ducks released melatonin in a well-entrained, regular rhythm during incubation under a 12 hrs light : 12 hrs dark cycle and adjusted their secretory activity to a reversed 12 hrs dark : 12 hrs light cycle within 2 days. In contrast, the diurnal changes in melatonin secretion from the pineals of 9-month-old ducks were largely irregular and the adaptation to a reversed cycle lasted 3 days. The pineal organs of nestling and adult ducks incubated in a continuous light or darkness secreted melatonin in a circadian rhythm. The treatment with norepinephrine during photophases of a light-dark cycle resulted in: 1) a precise adjustment of melatonin secretion rhythm to the pre...
Role of the Pineal in the Circadian System of Birds
American Zoologist, 1976
SYNOPSIS. Pinealectomy of sparrows abolishes the free running rhythm of locomotor activity in constant darkness. Without their pineals, sparrows still entrain to light-dark cycles and show other signs that they retain part, but not all, of the circadian system. Interruption of either the neural input to the pineal or its neural output, or both, does not abolish the free running rhythm. Rhythmicity can be restored to a pinealectomized bird by implanting the pineal of a donor into the anterior chamber of its eye. A model of the circadian system controlling locomotor behavior is proposed to account for these facts. We suggest that the avian pineal contains a self-sustained oscillator, and as a consequence, produces a rhythmic hormonal output. Circadian fluctuations of this hormone entrain a damped oscillator located elsewhere, which in turn drives the locomotor activity. Each oscillator has separate access to environmental light cycles. The behavior of a pinealectomized bird is determined exclusively by its damped oscillator. It does not free run because it lacks the self-sustained oscillator which, however, can be restored by transplantation. The transplanted pineal continues its self-sustained circadian hormonal output which entrains the damped oscillator and restores the system to its normal state.