Nonlinear Modeling of Causal Interrelationships in Neuronal Ensembles (original) (raw)

The Neurobiological Basis of Cognition: Identification by Multi-Input, Multioutput Nonlinear Dynamic Modeling

Proceedings of the IEEE, 2000

The successful development of neural prostheses requires an understanding of the neurobiological bases of cognitive processes, i.e., how the collective activity of populations of neurons results in a higher level process not predictable based on knowledge of the individual neurons and/or synapses alone. We have been studying and applying novel methods for representing nonlinear transformations of multiple spike train inputs (multiple time series of pulse train inputs) produced by synaptic and field interactions among multiple subclasses of neurons arrayed in multiple layers of incompletely connected units. We have been applying our methods to study of the hippocampus, a cortical brain structure that has been demonstrated, in humans and in animals, to perform the cognitive function of encoding new long-term (declarative) memories. Without their hippocampi, animals and humans retain a short-term memory (memory lasting approximately 1 min), and long-term memory for information learned prior to loss of hippocampal function. Results of more than 20 years of studies have demonstrated that both individual hippocampal neurons, and populations of hippocampal cells, e.g., the neurons comprising one of the three principal subsystems of the hippocampus, induce strong, higher order, nonlinear transformations of hippocampal inputs into hippocampal outputs. For one synaptic input or for a population of synchronously active synaptic inputs, such a transformation is represented by a sequence of action potential inputs being changed into a different sequence of action potential outputs. In other words, an incoming temporal pattern is transformed into a different, outgoing temporal pattern. For multiple, asynchronous synaptic inputs, such a transformation is represented by a spatiotemporal pattern of action potential inputs being changed into a different spatiotemporal pattern of action potential outputs. Our primary thesis is that the encoding of short-term memories into new, long-term memories represents the collective set of nonlinearities induced by the three or four principal subsystems of the hippocampus, i.e., entorhinal cortex-to-dentate gyrus, dentate gyrus-to-CA3 pyramidal cell region, CA3-to-CA1 pyramidal cell region, and CA1-to-subicular cortex. This hypothesis will be supported by studies using in vivo hippocampal multineuron recordings from animals performing memory tasks that require hippocampal function. The implications for this hypothesis will be discussed in the context of "cognitive prostheses"-neural prostheses for cortical brain regions believed to support cognitive functions, and that often are subject to damage due to stroke, epilepsy, dementia, and closed head trauma.

Nonlinear Dynamic Modeling of Spike Train Transformations for Hippocampal-Cortical Prostheses

IEEE Transactions on Biomedical Engineering, 2000

One of the fundamental principles of cortical brain regions, including the hippocampus, is that information is represented in the ensemble firing of populations of neurons, i.e., spatio-temporal patterns of electrophysiological activity. The hippocampus has long been known to be responsible for the formation of declarative, or fact-based, memories. Damage to the hippocampus disrupts the propagation of spatio-temporal patterns of activity through hippocampal internal circuitry, resulting in a severe anterograde amnesia. Developing a neural prosthesis for the damaged hippocampus requires restoring this multiple-input, multiple-output transformation of spatio-temporal patterns of activity. Because the mechanisms underlying synaptic transmission and generation of electrical activity in neurons are inherently nonlinear, any such prosthesis must be based on a nonlinear multiple-input, multiple-output model. In this paper, we have formulated the transformational process of multi-site propagation of spike activity between two subregions of the hippocampus (CA3 and CA1) as the identification of a multiple-input, multiple-output (MIMO) system, and proposed that it can be decomposed into a series of multiple-input, single-output (MISO) systems. Each MISO system is modeled as a physiologically plausible structure that consists of 1) linear/nonlinear feedforward Volterra kernels modeling synaptic transmission and dendritic integration, 2) a linear feedback Volterra kernel modeling spike-triggered after-potentials, 3) a threshold for spike generation, 4) a summation process for somatic integration, and 5) a noise term representing intrinsic neuronal noise and the contributions of unobserved inputs. Input and output spike trains were recorded from hippocampal CA3 and CA1 regions of rats performing a spatial delayed-nonmatch-to-sample memory task that requires normal hippocampal function. Kernels were expanded with Laguerre basis functions and estimated using a maximum-likelihood method. Complexity of the feedforward kernel was progressively increased to capture higher-order system nonlinear dynamics. Results showed higher prediction accuracies as kernel complexity increased. Self-kernels describe the nonlinearities within each input. Cross-kernels capture the nonlinear Manuscript

Nonlinear modeling of dynamic interactions within neuronal ensembles using Principal Dynamic Modes

Journal of Computational Neuroscience, 2013

A methodology for nonlinear modeling of multiinput multi-output (MIMO) neuronal systems is presented that utilizes the concept of Principal Dynamic Modes (PDM). The efficacy of this new methodology is demonstrated in the study of the dynamic interactions between neuronal ensembles in the Pre-Frontal Cortex (PFC) of a behaving non-human primate (NHP) performing a Delayed Match-to-Sample task. Recorded spike trains from Layer-2 and Layer-5 neurons were viewed as the "inputs" and "outputs", respectively, of a putative MIMO system/model that quantifies the dynamic transformation of multi-unit neuronal activity between Layer-2 and Layer-5 of the PFC. Model prediction performance was evaluated by means of computed Receiver Operating Characteristic (ROC) curves. The PDM-based approach seeks to reduce the complexity of MIMO models of neuronal ensembles in order to enable the practicable modeling of large-scale neural systems incorporating hundreds or thousands of neurons, which is emerging as a preeminent issue in the study of neural function. The "scaling-up" issue has attained critical importance as multi-electrode recordings are increasingly used to probe neural systems and advance our understanding of integrated neural function. The initial results indicate that the PDM-based modeling methodology may greatly reduce the complexity of the MIMO model without significant degradation of performance. Furthermore, the PDM-based approach offers the prospect of improved biological/physiological interpretation of the obtained MIMO models.

Design of optimal stimulation patterns for neuronal ensembles based on Volterra-type hierarchical modeling

Journal of Neural Engineering, 2012

This paper presents a general methodology for the optimal design of stimulation patterns applied to neuronal ensembles in order to elicit a desired effect. The methodology follows a variant of the hierarchical Volterra modeling approach that utilizes input-output data to construct predictive models that describe the effects of interactions among multiple input events in an ascending order of interaction complexity. The illustrative example presented in this paper concerns the multi-unit activity of CA1 neurons in the hippocampus of a rodent performing a learned delayed-nonmatch-to-sample (DNMS) task. The multi-unit activity of the hippocampal CA1 neurons is recorded via chronically implanted multi-electrode arrays during this task. The obtained model quantifies the likelihood of having correct performance of the specific task for a given multi-unit (spatiotemporal) activity pattern of a CA1 neuronal ensemble during the 'sample presentation' phase of the DNMS task. The model can be used to determine computationally (off-line) the 'optimal' multi-unit stimulation pattern that maximizes the likelihood of inducing the correct performance of the DNMS task. Our working hypothesis is that application of this optimal stimulation pattern will enhance performance of the DNMS task due to enhancement of memory formation and storage during the 'sample presentation' phase of the task.

Boolean Modeling of Neural Systems with Point-Process Inputs and Outputs. Part II: Application to the Rat Hippocampus

Annals of Biomedical Engineering, 2009

This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a "Boolean-Volterra" model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II).

Comparison of linear signal processing techniques to infer directed interactions in multivariate neural systems

Signal Processing, 2005

Over the last decades several techniques have been developed to analyze interactions in multivariate dynamic systems. These analysis techniques have been applied to empirical data recorded in various branches of research, ranging from economics to biomedical sciences. Investigations of interactions between different brain structures are of strong interest in neuroscience. The information contained in electromagnetic signals may be used to quantify the information transfer between those structures. When investigating such interactions, one has to face an inverse problem. Usually the distinct features and different conceptual properties of the underlying processes generating the empirical data and therefore the appropriate analysis technique are not known in advance. The performance of these methods has mainly been assessed on the basis of those model systems they have been developed for. To draw reliable conclusions upon application to empirical time series, understanding the properties and performances of the time series analysis techniques is essential. To this aim, the performances of four representative multivariate linear signal processing techniques in the time and frequency domain have been investigated in this study. The partial cross-spectral analysis and three different quantities measuring Granger causality, i.e. a Granger causality index, partial directed coherence, and the directed transfer function are compared on the basis of different model systems. To capture distinct properties in the dynamics of brain neural networks, we have investigated multivariate linear, multivariate nonlinear as well as multivariate non-stationary model systems. In an application to neural data recorded by electrothalamography and electrocorticography from juvenile pigs under sedation, directed as well as time-varying interactions have been studied between thalamic and cortical brain structures. The time-dependent alterations in local activity and changes in the interactions have been analyzed by the Granger causality index and the partial directed coherence. Both methods have been shown to be most ARTICLE IN PRESS www.elsevier.com/locate/sigpro 0165-1684/$ -see front matter r (M. Winterhalder).

Conditioned spikes: a simple and fast method to represent rates and temporal patterns in multielectrode recordings

Journal of Neuroscience Methods, 2004

Increasing evidence suggests that the brain utilizes distributed codes that can only be analyzed by simultaneously recording the activity of multiple neurons. This paper introduces a new methodology for studying neural ensemble recordings. The method uses a novel representation to provide complementary information about the stimuli which are contained in the temporal pattern of the spike sequence. By using this procedure, a high correlation of synchronized events with stimuli times is apparent. To quantify the results and to compare the performance of this method against the most traditional raster plot, we have used Fano factor and cross-correlation analysis. Our results suggest that several consecutive spikes from different neurons within an extended time window may encode behaviorally relevant information. We propose that this new representation, in addition to the other approaches currently used (standard raster plots, multivariate statistical methods, neuronal networks, information theory, etc.), can be a useful procedure to describe population spike dynamics.

Application of a Novel Modeling Method to the Nonstationary Properties of Potentiation in the Rabbit Hippocampus

Annals of Biomedical Engineering, 2000

This paper presents the first application of a novel methodology for nonstationary nonlinear modeling to neurobiological data consisting of extracellular population field potentials recorded from the dendritic layer of the dentate gyrus of the rabbit hippocampus under conditions of stimulus-induced potentiation. The experimental stimulus was a Poisson random sequence with a mean rate of 5 impulses/s applied to the perforant path, which was sufficient to induce a progressive potentiation of perforant path-evoked granule cell response. The modeling method utilizes a novel artificial neural network architecture, which is based on the general time-varying Volterra model. The artificial neural network is composed of parallel subnets of three-layer perceptrons with polynomial activation functions, with the output of each subnet modulated by an appropriate time function that models the system nonstationarities and gives the summative output its time-varying characteristics. For the specific application presented herein these time functions are sigmoidal functions with trainable slopes and inflection points. A possible mapping between the nonstationary components of the model and the mechanisms underlying potentiation changes in the hippocampus is discussed. © 1999 Biomedical Engineering Society. ͓S0090-6964͑99͒00305-7͔