Mutations in components of complement influence the outcome of Factor I-associated atypical hemolytic uremic syndrome (original) (raw)

Mutations in Complement Factor I Predispose to Development of Atypical Hemolytic Uremic Syndrome

Journal of the American Society of Nephrology, 2005

Mutations in the plasma complement regulator factor H (CFH) and the transmembrane complement regulator membrane co-factor protein (MCP) have been shown to predispose to atypical hemolytic uremic syndrome (HUS). Both of these proteins act as co-factors for complement factor I (IF). IF is a highly specific serine protease that cleaves the ␣-chains of C3b and C4b and thus downregulates activation of both the classical and the alternative complement pathways. This study looked for IF mutations in a panel of 76 patients with HUS. Mutations were detected in two patients, both of whom had reduced serum IF levels. A heterozygous bp change, c.463 G>A, which results in a premature stop codon (W127X), was found in one, and in the other, a heterozygous single base pair deletion in exon 7 (del 922C) was detected. Both patients had a history of recurrent HUS after transplantation. This is in accordance with the high rate of recurrence in patients with CFH mutations. Patients who are reported to have mutations in MCP, by contrast, do not have recurrence after transplantation. As with CFH-and MCPassociated HUS, there was incomplete penetrance in the family of one of the affected individuals. This study provides further evidence that atypical HUS is a disease of complement dysregulation.

Mutations in complement factor I as found in atypical hemolytic uremic syndrome lead to either altered secretion or altered function of factor I

European Journal of Immunology, 2009

The complement system is regulated by inhibitors such as factor I (FI), a serine protease that degrades activated complement factors C4b and C3b in the presence of specific cofactors. Mutations and polymorphisms in FI and its cofactors are associated with atypical hemolytic uremic syndrome (aHUS). All 14 complement factor I mutations associated with aHUS analyzed in this study were heterozygous and generated premature stop codons (six) or amino acid substitutions (eight). Almost all of the mutants were expressed by human embryonic kidney 293 cells but only six mutants were secreted into the medium, three of which were at lower levels than WT. The remaining eight mutants were not secreted but sensitive to deglycosylation with endoglycosidase H, indicating that they were retained early in the secretory pathway. Six secreted mutants were purified and five of them were functionally altered in degradation of C4b/C3b in the fluid-phase in the presence of various cofactors and on endothelial cells. Three mutants cleaved surfacebound C3b less efficiently than WT. The D501N mutant was severely impaired both in solution and on surface irrespective of the cofactor used. In conclusion, mutations in complement factor I affect both secretion and function of FI, which leads to impaired regulation of the complement system in aHUS.

The Complement Factor H R1210C Mutation Is Associated With Atypical Hemolytic Uremic Syndrome

Journal of the American Society of Nephrology, 2008

Mutations in the gene encoding complement factor H (CFH) that alter the C3b/polyanions-binding site in the C-terminal region impair the capacity of factor H to protect host cells. These mutations are also strongly associated with atypical hemolytic uremic syndrome (aHUS). Although most of the aHUSassociated CFH mutations seem "unique" to an individual patient or family, the R1210C mutation has been reported in several unrelated aHUS patients from distinct geographic origins. Five aHUS pedigrees and 7 individual aHUS patients were analyzed to identify potential correlations between the R1210C mutation and clinical phenotype and to characterize the origins of this mutation. The clinical phenotype of aHUS patients carrying the R1210C mutation was heterogeneous. Interestingly, 12 of the 13 affected patients carried at least one additional known genetic risk factor for aHUS. These data are in accord with the 30% penetrance of aHUS in R1210C mutation carriers, as it seems that the presence of other genetic or environmental risk factors significantly contribute to the manifestation and severity of aHUS in these subjects. Genotype analysis of CFH and CFHR3 polymorphisms in the 12 unrelated carriers suggested that the R1210C mutation has a single origin. In conclusion, the R1210C mutation of complement factor H is a prototypical aHUS mutation that is present as a rare polymorphism in geographically separated human populations.

Atypical hemolytic uremic syndrome and genetic aberrations in the complement factor H-related 5 gene

Journal of Human Genetics, 2012

Atypical HUS (aHUS) is a severe renal disorder that is associated with mutations in the genes encoding proteins of the complement alternative pathway. Previously, we identified pathogenic variations in genes encoding complement regulators (CFH, CFI, and MCP) in our aHUS cohort. In this study, we screened for mutations in the alternative pathway regulator CFHR5 in 65 aHUS patients by means of PCR on genomic DNA and sequence analysis. Potential pathogenicity of genetic alterations was determined by published data on CFHR5 variants, evolutionary conservation, and in silico mutation prediction programs. Detection of serum CFHR5 was performed by western blot analysis and ELISA.

Deletion of Complement Factor H–Related Genes CFHR1 and CFHR3 Is Associated with Atypical Hemolytic Uremic Syndrome

2007

Atypical hemolytic uremic syndrome (aHUS) is associated with defective complement regulation. Disease-associated mutations have been described in the genes encoding the complement regulators complement factor H, membrane cofactor protein, factor B, and factor I. In this study, we show in two independent cohorts of aHUS patients that deletion of two closely related genes, complement factor H-related 1 (CFHR1) and complement factor H-related 3 (CFHR3), increases the risk of aHUS. Amplification analysis and sequencing of genomic DNA of three affected individuals revealed a chromosomal deletion of ;84 kb in the RCA gene cluster, resulting in loss of the genes coding for CFHR1 and CFHR3, but leaving the genomic structure of factor H intact. The CFHR1 and CFHR3 genes are flanked by long homologous repeats with long interspersed nuclear elements (retrotransposons) and we suggest that nonallelic homologous recombination between these repeats results in the loss of the two genes. Impaired protection of erythrocytes from complement activation is observed in the serum of aHUS patients deficient in CFHR1 and CFHR3, thus suggesting a regulatory role for CFHR1 and CFHR3 in complement activation. The identification of CFHR1/CFHR3 deficiency in aHUS patients may lead to the design of new diagnostic approaches, such as enhanced testing for these genes.

Deletion of Complement Factor H Related Genes CFHR1 and CFHR3 is Associated with an Increased Risk of Atypical Hemolytic Uremic Syndrome

PLoS Genetics, 2005

Atypical hemolytic uremic syndrome (aHUS) is associated with defective complement regulation. Disease-associated mutations have been described in the genes encoding the complement regulators complement factor H, membrane cofactor protein, factor B, and factor I. In this study, we show in two independent cohorts of aHUS patients that deletion of two closely related genes, complement factor H-related 1 (CFHR1) and complement factor H-related 3 (CFHR3), increases the risk of aHUS. Amplification analysis and sequencing of genomic DNA of three affected individuals revealed a chromosomal deletion of ;84 kb in the RCA gene cluster, resulting in loss of the genes coding for CFHR1 and CFHR3, but leaving the genomic structure of factor H intact. The CFHR1 and CFHR3 genes are flanked by long homologous repeats with long interspersed nuclear elements (retrotransposons) and we suggest that nonallelic homologous recombination between these repeats results in the loss of the two genes. Impaired protection of erythrocytes from complement activation is observed in the serum of aHUS patients deficient in CFHR1 and CFHR3, thus suggesting a regulatory role for CFHR1 and CFHR3 in complement activation. The identification of CFHR1/CFHR3 deficiency in aHUS patients may lead to the design of new diagnostic approaches, such as enhanced testing for these genes.

Evaluation of complement regulatory components in patients with atypical hemolytic uremic syndrome

Central European Journal of Immunology, 2014

Background: atypical hemolytic uremic syndrome (aHus), a rare disorder characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure, is associated with mutations and polymorphisms in various components and regulators of the complement alternative pathway (aP), including factor H, factor i, membrane cofactor protein (mCP or Cd46) and factor b. this impaired regulation of the alternative pathway leads to a procoagulant state with microthrombi formation in the renal vasculature, which influences disease onset and progression.

Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome

Proceedings of the National Academy of Sciences, 2003

Factor H mutations occur in 10 -20% of patients with hemolytic uremic syndrome (HUS). We hypothesized that MCP mutations could predispose to HUS, and we sequenced MCP coding exons in affected individuals from 30 families. MCP mutations were detected in affected individuals of three families: a deletion of two amino acids (D237͞S238) in family 1 (heterozygous) and a substitution, S206P, in families 2 (heterozygous) and 3 (homozygous). We evaluated protein expression and function in peripheral blood mononuclear cells from these individuals. An individual with the D237͞S238 deletion had reduced MCP levels and Ϸ50% C3b binding compared with normal controls. Individuals with the S206P change expressed normal quantities of protein, but demonstrated Ϸ50% reduction in C3b binding in heterozygotes and complete lack of C3b binding in homozygotes. MCP expression and function was evaluated in transfectants reproducing these mutations. The deletion mutant was retained intracellularly. S206P protein was expressed on the cell surface but had a reduced ability to prevent complement activation, consistent with its reduced C3b binding and cofactor activity. This study presents further evidence that complement dysregulation predisposes to development of thrombotic microangiopathy and that screening patients for such defects could provide informed treatment strategies.

The Alternative Pathway of Complement and the Evolving Clinical-Pathophysiological Spectrum of Atypical Hemolytic Uremic Syndrome

The American journal of the medical sciences, 2016

Complement-mediated atypical hemolytic uremic syndrome (aHUS) comprises approximately 90% of cases of aHUS, and results from dysregulation of endothelial-anchored complement activation with resultant endothelial damage. The discovery of biomarker ADAMTS13 has enabled a more accurate diagnosis of thrombotic thrombocytopenic purpura (TTP) and an appreciation of overlapping clinical features of TTP and aHUS. Given our present understanding of the pathogenic pathways involved in aHUS, it is unlikely that a specific test will be developed. Rather the use of biomarker data, complement functional analyses, genomic analyses and clinical presentation will be required to diagnose aHUS. This approach would serve to clarify whether a thrombotic microangiopathy present in a complement-amplifying condition arises from the unmasking of a genetically driven aHUS versus a time-limited complement storm-mediated aHUS due to direct endothelial damage in which no genetic predisposition is present. Altho...