Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption (original) (raw)

The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy

Physics in Medicine and Biology, 1999

A method is described for measuring optical properties and deriving chromophore concentrations from diffuse reflection measurements at the surface of a turbid medium. The method uses a diffusion approximation model for the diffuse reflectance, in combination with models for the absorption and scattering coefficients. An optical fibre-based set-up, capable of measuring nine spectra from 400 to 1050 nm simultaneously, is used to test the method experimentally. Results of the analyses of phantom and in vivo measurements are presented. These demonstrate that in the wavelength range from 600 to 900 nm, tissue scattering can be described as a simple power dependence of the wavelength and that the tissue absorption can be accurately described by the addition of water, oxy-and deoxyhaemoglobin absorption.

Opportunities and pitfalls in (sub)diffuse reflectance spectroscopy

Frontiers in Photonics

For a long time, steady-state reflectance spectroscopy measurements have been performed so that diffusion theory could be used to extract tissue optical properties from the reflectance. The development of subdiffuse techniques, such as Single Fiber Reflectance Spectroscopy and subdiffuse SFDI, provides new opportunities for clinical applications since they have the key advantage that they are much more sensitive to the details of the tissue scattering phase function in comparison to diffuse techniques. Since the scattering phase function is related to the subcellular structure of tissue, subdiffuse measurements have the potential to provide a powerful contrast between healthy and diseased tissue. In the subdiffuse regime, the interrogated tissue volumes are much smaller than in the diffuse regime. Whether a measurement falls within the diffuse or subdiffuse regime depends on tissue optical properties and the distance between the source and detector fiber for fiber-optic techniques o...

Validation of tissue optical properties measurement using diffuse reflectance spectroscopy (DRS)

Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVIII

The effectiveness of photodynamic treatment depends on several factors including an accurate knowledge of optical properties of the tissue to be treated. Transmittance and diffuse reflectance spectroscopic techniques are commonly used to determine tissue optical properties. Although transmittance spectroscopy technique is accurate in determining tissue optical properties, it is only valid in an infinite medium and can only be used for interstitial measurements. Diffuse reflectance spectroscopy, on the other hand, is easily adapted to most tissue geometries including skin measurements that involve semi-infinte medium. However, the accuracy of the measured optical properties can be affected by uncertainty in the measurements themselves and/or due to the uncertainty in the fitting algorithm. In this study, we evaluate the accuracy of optical properties determination using diffuse reflectance spectroscopy implemented using a contact probe setup. We characterized the error of the optical properties fitted using two fitting algorithms, a wavelength wise fitting algorithm and a full reflectance spectral fitting algorithm. By conducting systematic investigation of the measurements and fitting algorithm of DRS, we gained an understanding of the uncertainties in the measured optical properties and outlined improvement measures to minimize these errors.

Diffuse reflectance spectroscopy characterization

Abstract. Absorption and scattering processes in biological tissues are studied through reflectance spectroscopy in tissue-like phantoms. For this aim, an experimental setup is designed to independently control both processes in hemoglobin and intralipid solutions. From the analysis of the obtained spectra, a simple empirical power law equation is found that relates absorbance with scattering and absorption coefficients. This relationship includes three wavelength independent parameters, which can be determined geometry from in vitro measurements for each particular optical optode. The dependence of the optical path length on the absorption and scattering coefficients is also analyzed, and estimations of this parameter for physiological conditions are presented. This study is useful to better understand the scattering phenomena in biological tissue, and to obtain absolute concentration of absorber particles when a homogeneous medium can be assumed.

Chromophore concentrations, absorption and scattering properties of human skin in-vivo

Optics Express, 2009

Absorption and reduced scattering coefficients of in-vivo human skin provide critical information on non-invasive skin diagnoses for aesthetic and clinical purposes. To date, very few in-vivo skin optical properties have been reported. Previously, we reported absorption and scattering properties of invivo skin in the wavelength range from 650 to 1000nm using the diffusing probe in the "modified two-layer geometry". In this study, we determine the spectra of skin optical properties continuously in the range from 500 to 1000nm. It was found that the concentration of chromophores, such as oxyhemoglobin, deoxy-hemoglobin, and melanin, calculated based on the absorption spectra of eighteen subjects at wavelengths above and below 600nm were distinct because of the inherent difference in the interrogation region. The scattering power, which is related to the average scatterer's size, demonstrates a clear contrast between skin phototypes, skin sites, and wavelengths. We also applied venous occlusion on forearms and found that the concentrations of oxy-and deoxy-hemoglobin as assessed at wavelengths above and below 600nm were different. Our results suggest that diffuse reflectance techniques with the visible and near infrared light sources can be employed to investigate the hemodynamics and optical properties of upper dermis and lower dermis.

Analysis of spectroscopic diffuse reflectance plots for different skin conditions

Spectroscopy, 2010

Optical means of characterizing tissues have gained importance due to its noninvasive nature. Spectral characteristics of the components provide useful information to identify the components, because different chromophores have different spectroscopic responses to electromagnetic waves of a certain energy band. The purpose of this study is to determine whether visible/near-infrared diffuse reflectance spectroscopy can be used to non-invasively characterize skin diseasesin vivo.An optical fiber spectrometer is set up for obtaining diffuse reflectance spectra. The method involves exposure of skin surface to white light produced by an incandescent source. The back scattered photons emerging from various layers of tissue are detected by spectrometer resulting in diffuse reflectance spectra.For the present study different skin conditions like – warts, vitiligo, thrombus (due to injury) and angioma are chosen. The spectral data obtained from the scan are plotted and compared. More or less...

Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy

Journal of Biomedical Optics, 2009

Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett's esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued.

Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering

Journal of Biomedical Optics, 2009

Absorption and scattering processes in biological tissues are studied through reflectance spectroscopy in tissue-like phantoms. For this aim, an experimental setup is designed to independently control both processes in hemoglobin and intralipid solutions. From the analysis of the obtained spectra, a simple empirical power law equation is found that relates absorbance with scattering and absorption coefficients. This relationship includes three wavelength independent parameters, which can be determined geometry from in vitro measurements for each particular optical optode. The dependence of the optical path length on the absorption and scattering coefficients is also analyzed, and estimations of this parameter for physiological conditions are presented. This study is useful to better understand the scattering phenomena in biological tissue, and to obtain absolute concentration of absorber particles when a homogeneous medium can be assumed.

Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue

Applied Optics, 1996

The absorption and transport scattering coefficients of biological tissues determine the radial dependence of the diffuse reflectance that is due to a point source. A system is described for making remote measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact estimates of the tissue optical properties. The system incorporated a laser source and a CCD camera. Deflection of the incident beam into the camera allowed characterization of the source for absolute reflectance measurements. It is shown that an often used solution of the diffusion equation cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0 mm 21 and absorption coefficients between 0.002 and 0.1 mm 21 showed the rms errors of this technique to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle 1breast2, were also measured ex vivo at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation did not agree with experimental measurements of reflectance at distances less than 2 mm from the incident beam.

Portable, Fiber-Based, Diffuse Reflection Spectroscopy (DRS) Systems for Estimating Tissue Optical Properties

Applied Spectroscopy, 2011

Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with wellcontrolled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously wellcharacterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.