Mapping Genetic Influences on Brain Fiber Architecture and Intellectual Performance - A High Angular Resolution Diffusion Imaging (HARDI) Study (original) (raw)
Related papers
Lecture Notes in Computer Science, 2008
We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA; [1]) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain.
2015
Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20–30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.
Heritability of White Matter Fiber Tract Shapes: A HARDI Study of 198 Twins
Multimodal brain image analysis : first international workshop, MBIA 2011, held in conjunction with MICCAI 2011, Toronto, Canada, September 18, 2011 : proceedings / Tianming Liu ... [et al.], (eds.), 2011
Genetic analysis of diffusion tensor images (DTI) shows great promise in revealing specific genetic variants that affect brain integrity and connectivity. Most genetic studies of DTI analyze voxel-based diffusivity indices in the image space (such as 3D maps of fractional anisotropy) and overlook tract geometry. Here we propose an automated workflow to cluster fibers using a white matter probabilistic atlas and perform genetic analysis on the shape characteristics of fiber tracts. We apply our approach to large study of 4-Tesla high angular resolution diffusion imaging (HARDI) data from 198 healthy, young adult twins (age: 20-30). Illustrative results show heritability for the shapes of several major tracts, as color-coded maps.
Investigating brain connectivity heritability in a twin study using diffusion imaging data
NeuroImage, 2014
Heritability of brain anatomical connectivity has been studied with diffusion-weighted imaging (DWI) mainly by modeling each voxel's diffusion pattern as a tensor (e.g., to compute fractional anisotropy), but this method cannot accurately represent the many crossing connections present in the brain. We hypothesized that different brain networks (i.e., their component fibers) might have different heritability and we investigated brain connectivity using High Angular Resolution Diffusion Imaging (HARDI) in a cohort of twins comprising 328 subjects that included 70 pairs of monozygotic and 91 pairs of dizygotic twins. Water diffusion was modeled in each voxel with a Fiber Orientation Distribution (FOD) function to study heritability for multiple fiber orientations in each voxel. Precision was estimated in a test-retest experiment on a sub-cohort of 39 subjects. This was taken into account when computing heritability of FOD peaks using an ACE model on the monozygotic and dizygotic twins. Our results confirmed the overall heritability of the major white matter tracts but also identified differences in heritability between connectivity networks. Inter-hemispheric connections tended to be more heritable than intra-hemispheric and cortico-spinal connections. The highly heritable tracts were found to connect particular cortical regions, such as medial frontal cortices, postcentral, paracentral gyri, and the right hippocampus.
2010 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010 - Proceedings, 2010
Recent advances in diffusion-weighted MRI (DWI) have enabled studies of complex white matter tissue architecture in vivo. To date, the underlying influence of genetic and environmental factors in determining central nervous system connectivity has not been widely studied. In this work, we introduce new scalar connectivity measures based on a computationally-efficient fast-marching algorithm for quantitative tractography. We then calculate connectivity maps for a DTI dataset from 92 healthy adult twins and decompose the genetic and environmental contributions to the variance in these metrics using structural equation models. By combining these techniques, we generate the first maps to directly examine genetic and environmental contributions to brain connectivity in humans. Our approach is capable of extracting statistically significant measures of genetic and environmental contributions to neural connectivity.
Genetics of Brain Fiber Architecture and Intellectual Performance
Journal of Neuroscience, 2009
The paper is the first to analyze genetic and environmental factors that affect brain fiber architecture and its genetic linkage with cognitive function. We assessed white matter integrity voxelwise using diffusion tensor imaging (DTI) at high magnetic field (4 Tesla), in 92 identical and fraternal twins. White matter integrity, quantified using fractional anisotropy (FA), was used to fit structural equation models (SEM) at each point in the brain, generating 3D maps of heritability. We visualized the anatomical profile of correlations between white matter integrity and full-scale, verbal, and performance intelligence quotients (FIQ, VIQ, and PIQ). White matter integrity (FA) was under strong genetic control and was highly heritable in bilateral frontal (a 2 = 0.55, P = 0.04, left; a 2 = 0.74, P = 0.006, right), bilateral parietal (a 2 = 0.85, P < 0.001, left; a 2 = 0.84, P < 0.001, right) and left occipital (a 2 = 0.76, P = 0.003) lobes, and was correlated with FIQ and PIQ in the cingulum, optic radiations, superior fronto-occipital fasciculus, internal capsule, callosal isthmus, and the corona radiata (P = 0.04 for FIQ and P = 0.01 for PIQ, corrected for multiple comparisons). In a cross-trait mapping approach, common genetic factors mediated the correlation between IQ and white matter integrity, suggesting a common physiological mechanism for both, and common genetic determination. These genetic brain maps reveal heritable aspects of white matter integrity and should expedite the discovery of single-nucleotide polymorphisms affecting fiber connectivity and cognition.
Genetic analysis of structural brain connectivity using DICCCOL models of diffusion MRI in 522 twins
2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015
Genetic and environmental factors affect white matter connectivity in the normal brain, and they also influence diseases in which brain connectivity is altered. Little is known about genetic influences on brain connectivity, despite wide variations in the brain's neural pathways. Here we applied the "DICCCOL" framework to analyze structural connectivity, in 261 twin pairs (522 participants, mean age: 21.8 y ± 2.7SD). We encoded connectivity patterns by projecting the white matter (WM) bundles of all "DICCCOLs" as a tracemap (TM). Next we fitted an A/C/E structural equation model to estimate additive genetic (A), common environmental (C), and unique environmental/error (E) components of the observed variations in brain connectivity. We found 44 "heritable DICCCOLs" whose connectivity was genetically influenced (2 >1%); half of them showed significant heritability (2 >20%). Our analysis of genetic influences on WM structural connectivity suggests high heritability for some WM projection patterns, yielding new targets for genome-wide association studies.
Genetics of structural connectivity and information processing in the brain
Brain structure & function, 2016
Understanding the genetic factors underlying brain structural connectivity is a major challenge in imaging genetics. Here, we present results from genome-wide association studies (GWASs) of whole-brain white matter (WM) fractional anisotropy (FA), an index of microstructural coherence measured using diffusion tensor imaging. Data from independent GWASs of 355 Swedish and 250 Norwegian healthy adults were integrated by meta-analysis to enhance power. Complementary GWASs on behavioral data reflecting processing speed, which is related to microstructural properties of WM pathways, were performed and integrated with WM FA results via multimodal analysis to identify shared genetic associations. One locus on chromosome 17 (rs145994492) showed genome-wide significant association with WM FA (meta P value = 1.87 × 10(-08)). Suggestive associations (Meta P value <1 × 10(-06)) were observed for 12 loci, including one containing ZFPM2 (lowest meta P value = 7.44 × 10(-08)). This locus was al...