A fungus among us: the Neurospora crassa circadian system (original) (raw)
Related papers
Interlocked feedback loops of the circadian clock of Neurospora crassa
Molecular Microbiology, 2008
Circadian clocks drive daily rhythms in physiology and behaviour, and thus allow organisms to better adapt to rhythmic changes in the environment. Circadian oscillators are cell-autonomous systems, which generate via transcriptional, post-transcriptional, translational and post-translational control mechanisms a daily activity-rhythm of a circadian transcription factor complex. According to recent models, this complex of transcription factors controls directly or indirectly expression of a large number of genes, and thus generates the potential to modulate physiological processes in a rhythmic fashion. The basic principles of the generation of circadian oscillation are similar in all eukaryotic systems. The circadian clock of the filamentous fungus Neurospora crassa is well characterized at the molecular level. Focusing on the molecular properties, interactions and post-translational modifications of the core Neurospora clock proteins WHITE COLLAR-1, WHITE COLLAR-2, FREQUENCY and VIVID, this review summarizes our knowledge of the molecular basis of circadian time keeping in Neurospora. Moreover, we discuss the mechanisms by which environmental cues like light and temperature entrain and reset this circadian system.
Proceedings of the National Academy of Sciences, 1996
An endogenous circadian biological clock controls the temporal aspects of life in most organisms, including rhythmic control of genes involved in clock output pathways. In the fungus Neurospora crassa, one pathway known to be under control of the clock is asexual spore (conidia) development. To understand more fully the processes that are regulated by the N. crassa circadian clock, systematic screens were carried out for genes that oscillate at the transcriptional level. Time-of-day-specific cDNA libraries were generated and used in differential screens to identify six new clock-controlled genes (ccgs). Transcripts specific for each of the ccgs preferentially accumulate during the late night to early morning, although they vary with respect to steady-state mRNA levels and amplitude of the rhythm. Sequencing of the ends of the new ccg cDNAs revealed that ccg-12 is identical to N. crassa cmt encoding copper metallothionein, providing the suggestion that not all clock-regulated genes in N. crassa are specifically involved in the development of conidia. This was supported by finding that half of the new ccgs, including cmt(ccg-12), are not transcriptionally induced by developmental or light signals. These data suggest a major role for the clock in the regulation of biological processes distinct from development.
The diversity and evolution of circadian clock proteins in fungi
Mycologia, 2010
Circadian rhythms are endogenous cellular patterns that associate multiple physiological and molecular functions with time. The Neurospora circadian system contains at least three oscillators: the FRQ/WC-dependent circadian oscillator (FWO), whose core components are the FRQ, WC-1, WC-2, FRH, and FWD-1 proteins; the WC-dependent circadian oscillator (WC-FLO); and one or more FRQ/ WC-independent oscillators (FLO). Little is known about the distribution of homologs of the Neurospora clock proteins or about the molecular foundations of circadian rhythms across fungi. Here, we examined 64 diverse fungal proteomes for homologs of all five Neurospora clock proteins and retraced their evolutionary history. The FRH and FWD-1 proteins were likely present in the fungal ancestor. WC-1 and WC-2 homologs are absent from the early diverging chytrids and Microsporidia but are present in all other major clades. In contrast to the deep origins of these four clock proteins FRQ homologs are taxonomically restricted within Sordariomycetes, Leotiomycetes and Dothideomycetes. The large number of FRH and FWD-1 homologs identified and their lack of concordance with the fungal species phylogeny indicate that they likely underwent multiple rounds of duplications and losses. In contrast, the FRQ, WC-1 and WC-2 proteins exhibit relatively few duplications and losses. A notable exception is the 10 FRQ-like proteins in Fusarium oxysporum, which resulted from nine duplication events. Our results suggest that the machinery required for FWO oscillator function is taxonomically restricted within Ascomycetes. Although the WC proteins are widely distributed, the functional diversity of the few non-Neurospora circadian oscillators suggests that a WC-FLO oscillator is unlikely to fully explain the observed rhythms. The contrast between the diversity of circadian oscillators and the conservation of most of their machinery is likely best explained by considering the centrality of noncircadian functions in which RNA helicase (FRH), F-box (FWD-1), WC-1 and WC-2 (lightsensing) proteins participate in fungi and eukaryotes.
PLoS One, 2007
Background. WHITE COLLAR-1 (WC-1) mediates interactions between the circadian clock and the environment by acting as both a core clock component and as a blue light photoreceptor in Neurospora crassa. Loss of the amino-terminal polyglutamine (NpolyQ) domain in WC-1 results in an arrhythmic circadian clock; this data is consistent with this simple sequence repeat (SSR) being essential for clock function. Methodology/Principal Findings. Since SSRs are often polymorphic in length across natural populations, we reasoned that investigating natural variation of the WC-1 NpolyQ may provide insight into its role in the circadian clock. We observed significant phenotypic variation in the period, phase and temperature compensation of circadian regulated asexual conidiation across 143 N. crassa accessions. In addition to the NpolyQ, we identified two other simple sequence repeats in WC-1. The sizes of all three WC-1 SSRs correlated with polymorphisms in other clock genes, latitude and circadian period length. Furthermore, in a cross between two N. crassa accessions, the WC-1 NpolyQ co-segregated with period length. Conclusions/Significance. Natural variation of the WC-1 NpolyQ suggests a mechanism by which period length can be varied and selected for by the local environment that does not deleteriously affect WC-1 activity. Understanding natural variation in the N. crassa circadian clock will facilitate an understanding of how fungi exploit their environments.
Proceedings of the National Academy of Sciences, 2014
Significance Circadian clocks regulate gene expression levels to allow an organism to anticipate environmental conditions. These clocks reside in all the major branches of life and confer a competitive advantage to the organisms that maintain them. The clock in the fungus Neurospora crassa is an excellent model for basic understanding of core circadian architecture as well as for filamentous fungi. Here, we identify genes whose expression is clock regulated; indeed, as much as 40% of the transcriptome may be clock regulated, broadly directing daytime catabolism and nighttime growth. Both transcriptional control and posttranscriptional regulation play major roles in control of cycling transcripts such that DNA binding of transcription factors alone appears insufficient to set the phase of circadian transcription.
Entrainment reveals the photoreceptor gene cryptochrome as a clock gene in Neurospora crassa
Neurospora has been used as a model organism for studying blue light responses. Carotenoid production, asexual spore induction, phototropism and synchronization of the circadian clock are some important blue light-regulated physiologies of the filamentous fungus Neurospora crassa. The many candidates for photoreceptor molecules in Neurospora indicate complexity of light signalling in this simple organism. WHITE-COLLAR-1 (WC-1) a transcription factor and VIVID (VVD), a flavoprotein, are well-described blue-light sensing components of Neurospora crassa. The sequence of the Neurospora genome contains phytochrome and cryptochrome homologs. The functional analyses of the former have been described recently. The Neurospora CRYPTOCHROME (nCRY) has not yet been characterised, although its sequence-similarity to the animal cryptochromes suggests that it might be involved in the circadian photobiology of N. crassa. To test this hypothesis we made an ncry-knock-out-mutant and subjected it to a series of circadian protocols. The results of our phenotyping suggest that ncry is a clock gene. The mutant phenotype is accentuated in entrainment experiments using long photoperiods, therefore we propose non-standard entrainment protocols as valuable tools for the characterization of clock mutants in Neurospora crassa. .
Light reception and circadian behavior in 'blind' and 'clock-less' mutants of Neurospora crassa
The EMBO Journal, 2002
The ®lamentous fungus Neurospora crassa is a model organism for the genetic dissection of blue light photoreception and circadian rhythms. WHITE COLLAR-1 (WC-1) and WC-2 are considered necessary for all light responses, while FREQUENCY (FRQ) is required for light-regulated asexual development (conidia formation); without any of the three, self-sustained (circadian) rhythmicity in constant conditions fails. Here we show that light-regulated and self-sustained development occur in the individual or mutant white collar strains. These strains resemble wild type in their organization of the daily bout of light-regulated conidiation. Molecular pro®les of lightinduced genes indicate that the individual white collar-1 and white collar-2 mutants utilize distinct pathways, despite their similar appearance in all aspects. Titration of¯uence rate also demonstrates different light sensitivities between the two strains. The data require the existence of an as-yet-unidenti-®ed photoreceptor. Furthermore, the extant circadian clock machinery in these mutant strains supports the notion that the circadian system in Neurospora involves components outside the WC±FRQ loop.