Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae) (original) (raw)

Amblyomma sculptum Salivary Protease Inhibitors as Potential Anti-Tick Vaccines

Frontiers in Immunology

Amblyomma sculptum is the main tick associated with human bites in Brazil and the main vector of Rickettsia rickettsii, the causative agent of the most severe form of Brazilian spotted fever. Molecules produced in the salivary glands are directly related to feeding success and vector competence. In the present study, we identified sequences of A. sculptum salivary proteins that may be involved in hematophagy and selected three proteins that underwent functional characterization and evaluation as vaccine antigens. Among the three proteins selected, one contained a Kunitz_bovine pancreatic trypsin inhibitor domain (named AsKunitz) and the other two belonged to the 8.9 kDa and basic tail families of tick salivary proteins (named As8.9kDa and AsBasicTail). Expression of the messenger RNA (mRNA) encoding all three proteins was detected in the larvae, nymphs, and females at basal levels in unfed ticks and the expression levels increased after the start of feeding. Recombinant proteins rAs...

Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed Amblyomma sculptum Ticks and Descriptive Proteome of the Saliva

Frontiers in cellular and infection microbiology, 2017

Ticks are obligate blood feeding ectoparasites that transmit a wide variety of pathogenic microorganisms to their vertebrate hosts. Amblyomma sculptum is vector of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), the most lethal rickettsiosis that affects humans. It is known that the transmission of pathogens by ticks is mainly associated with the physiology of the feeding process. Pathogens that are acquired with the blood meal must first colonize the tick gut and later the salivary glands (SG) in order to be transmitted during a subsequent blood feeding via saliva. Tick saliva contains a complex mixture of bioactive molecules with anticlotting, antiplatelet aggregation, vasodilatory, anti-inflammatory, and immunomodulatory properties to counteract both the hemostasis and defense mechanisms of the host. Besides facilitating tick feeding, the properties of saliva may also benefits survival and establishment of pathogens in the host. In the current s...

Amblyomma americanum (L.) (Acari: Ixodidae) tick salivary gland serine protease inhibitor (serpin) 6 is secreted into tick saliva during tick feeding

Journal of Experimental Biology, 2011

SUMMARY In order to successfully feed and transmit disease agents, ticks are thought to inject serine protease inhibitors (serpins) into the host to modulate host defense responses to tick feeding, such as inflammation, the complement activation pathway and blood coagulation. In this study, we show that Amblyomma americanum (Aam) serpin (S) 6 is putatively injected into the host during tick feeding, in that the antibody to recombinant (r) AamS6 specifically reacted with the expected ∼43/45 kDa AamS6 protein band on western blots of pilocarpine-induced tick saliva. Additionally, antibodies to tick saliva proteins that were generated by repeated 48 h infestations of rabbits with adult A. americanum specifically reacted with rAamS6. We speculate that AamS6 is associated with regulating events at the start of the tick feeding process, as temporal and spatial RT-PCR and western blot analyses revealed that both AamS6 mRNA and protein are strongly expressed during the first 24–72 h of feed...

The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae

Insect Biochemistry and Molecular Biology, 2005

Ixodes pacificus salivary gland cDNA library yielded 1068 sequences with an average undetermined nucleotide of 1.9% and an average length of 487 base pairs. Assembly of the expressed sequence tags yielded 557 contigs, 138 of which appear to code for secreted peptides or proteins based on translation of a putative signal peptide. Based on the BLASTX similarity of these contigs to 66 matches of Ixodes scapularis peptide sequences, only 58% sequence identity was found, indicating a rapid divergence of salivary proteins as observed previously for mosquito and triatomine bug salivary proteins. Here we report 106 mostly full-length sequences that clustered in 16 different families: Basic-tail proteins rich in lysine in the carboxy-terminal, Kunitzcontaining proteins (monolaris, ixolaris and penthalaris families), proline-rich peptides, 5-kDa.-, 9.4 kDa.-, and 18.7 kDa.-proteins of unknown functions, in addition to metalloproteases (class PIII-like) similar to reprolysins. We also have found a family of disintegrins, named ixodegrins that display homology to variabilin, a GPIIb/IIIa antagonist from the tick Dermacentor variabilis. In addition, we describe peptides (here named ixostatins) that display remarkable similarities to the cysteine-rich domain of ADAMST-4 (aggrecanase). Many molecules were assigned in the lipocalin family (histamine-binding proteins); others appear to be involved in oxidant metabolism, and still others were similar to ixodid proteins such as the anticomplement ISAC. We also identified for the first time a neuropeptide-like protein (nlp-31) with GGY repeats that may have antimicrobial activity.

IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection

PLoS neglected tropical diseases, 2014

Ixodes ricinus is the most widespread and abundant tick in Europe, frequently bites humans, and is the vector of several pathogens including those responsible for Lyme disease, Tick-Borne Encephalitis, anaplasmosis, babesiosis and bartonellosis. These tick-borne pathogens are transmitted to vertebrate hosts via tick saliva during blood feeding, and tick salivary gland (SG) factors are likely implicated in transmission. In order to identify such tick factors, we characterized the transcriptome of female I. ricinus SGs using next generation sequencing techniques, and compared transcriptomes between Bartonella henselae-infected and non-infected ticks. High-throughput sequencing of I. ricinus SG transcriptomes led to the generation of 24,539 isotigs. Among them, 829 and 517 transcripts were either significantly up- or down-regulated respectively, in response to bacterial infection. Searches based on sequence identity showed that among the differentially expressed transcripts, 161 transc...

De novo assembled salivary gland transcriptome and expression pattern analyses for Rhipicephalus evertsi evertsi Neuman, 1897 male and female ticks

Scientific Reports

Ticks secrete proteins in their saliva that change over the course of feeding to modulate the host inflammation, immune responses, haemostasis or may cause paralysis. RNA next generation sequencing technologies can reveal the complex dynamics of tick salivary glands as generated from various tick life stages and/or males and females. The current study represents 15,115 Illumina sequenced contigs of the salivary gland transcriptome from male and female Rhipicephalus evertsi evertsi ticks of early, mid and late feeding stages from 1320 separate assemblies using three short read assemblers. The housekeeping functional class contributed to the majority of the composition of the transcriptome (80%) but with lower expression (51%), while the secretory protein functional class represented only 14% of the transcriptome but 46% of the total coverage. Six percent had an unknown status contributing 3% of the overall expression in the salivary glands. Platelet aggregation inhibitors, blood clot...

Comparative proteomics for the characterization of the most relevant Amblyomma tick species as vectors of zoonotic pathogens worldwide

Journal of Proteomics, 2013

Ticks transmit zoonotic pathogens worldwide. Nevertheless, very little information is available on their genome, transcriptome and proteome. Herein, we characterized the proteome of Amblyomma americanum adults and nymphs because of their role in pathogen transmission and compared the proteome of A. americanum, A. cajennense and A. variegatum adult ticks. We also used de novo sequencing proteomics data for the analysis of the phylogenetic relationships between the three Amblyomma spp. in a proof of concept for phyloproteomics. The results showed that host and tick proteins involved in blood digestion, heme detoxification, development and innate immunity were differentially represented between adults and nymphs. Although these ticks were unfed, over-represented host proteins may supply nutrients during off-host periods. Tick proteins involved in tick attachment, feeding, heat shock response, protease inhibition and heme detoxification were differentially represented between Amblyomma spp., suggesting adaptation processes to biotic and abiotic factors. These results suggested that phyloproteomics might be a useful tool for the phylogenetic analysis of tick species in which sequence data is a limiting factor and demonstrate the possibilities of proteomics studies for the characterization of relevant tick vector species and provide new relevant information to understand the physiology, development and evolution of these tick species.

An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks

Insect Biochemistry and Molecular Biology, 2006

Over 8000 expressed sequence tags from six different salivary gland cDNA libraries from the tick Ixodes scapularis were analyzed. These libraries derive from feeding nymphs infected or not with the Lyme disease agent, Borrelia burgdorferi, from unfed adults, and from adults feeding on a rabbit for 6–12 h, 18–24 h, and 3–4 days. Comparisons of the several libraries led to identification of several significantly differentially expressed transcripts. Additionally, over 500 new predicted protein sequences are described, including several novel gene families unique to ticks; no function can be presently ascribed to most of these novel families. Among the housekeeping-associated transcripts, we highlight those enzymes associated with post translation modification of amino acids, particularly those forming sulfotyrosine, hydroxyproline, and carboxyl-glutamic acid. Results support the hypothesis that gene duplication, most possibly including genome duplications, is a major player in tick evolution.