Crystal Structure of a Nucleocapsid-Like Nucleoprotein-RNA Complex of Respiratory Syncytial Virus (original) (raw)
Related papers
Journal of Virology, 2015
Presently, respiratory syncytial virus (RSV), the main cause of severe respiratory infections in infants, cannot be treated efficiently with antivirals. However, its RNA-dependent polymerase complex offers potential targets for RSV-specific drugs. This includes the recognition of its template, the ribonucleoprotein complex (RNP), consisting of genomic RNA encapsidated by the RSV nucleoprotein, N. This recognition proceeds via interaction between the phosphoprotein P, which is the main polymerase cofactor, and N. The determinant role of the C terminus of P, and more particularly of the last residue, F241, in RNP binding and viral RNA synthesis has been assessed previously. Here, we provide detailed structural insight into this crucial interaction for RSV polymerase activity. We solved the crystallographic structures of complexes between the N-terminal domain of N (N-NTD) and C-terminal peptides of P and characterized binding by biophysical approaches. Our results provide a rationale ...
The respiratory syncytial virus nucleoprotein-RNA complex forms a left-handed helical nucleocapsid
Journal of General Virology, 2013
Respiratory syncytial virus (RSV) is an important human pathogen. Its nucleocapsid (NC), which comprises the negative sense RNA viral genome coated by the viral nucleoprotein N, is a critical assembly that serves as template for both mRNA synthesis and genome replication. We have previously described the X-ray structure of an NC-like structure: a decameric ring formed of N-RNA that mimics one turn of the helical NC. In the absence of experimental data we had hypothesized that the NC helix would be right-handed, as the N–N contacts in the ring appeared to more easily adapt to that conformation. We now unambiguously show that the RSV NC is a left-handed helix. We further show that the contacts in the ring can be distorted to maintain key N–N-protein interactions in a left-handed helix, and discuss the implications of the resulting atomic model of the helical NC for viral replication and transcription.
The 24-Angstrom Structure of Respiratory Syncytial Virus Nucleocapsid Protein-RNA Decameric Rings
Journal of Virology, 2007
Respiratory syncytial virus (RSV), a nonsegmented, negative-sense RNA-containing virus, is a common cause of lower respiratory tract disease. Expression of RSV nucleocapsid protein (N) in insect cells using the baculovirus expression system leads to the formation of N-RNA complexes that are morphologically indistinguishable from viral nucleocapsids. When imaged in an electron microscope, three distinct types of structures were observed: tightly wound short-pitch helices, highly extended helices, and rings. Negative stain images of N-RNA rings were used to calculate a three-dimensional reconstruction at 24 Å resolution, revealing features similar to those observed in nucleocapsids from other viruses of the order Mononegavirales . The reconstructed N-RNA rings comprise 10 N monomers and have an external radius of 83 Å and an internal radius of 40 Å. Comparison of this structure with crystallographic data from rabies virus and vesicular stomatitis virus N-RNA rings reveals striking ...
PLOS Pathogens, 2020
The ribonucleocapsid complex of respiratory syncytial virus (RSV) is responsible for both viral mRNA transcription and viral replication during infection, though little is known about how this dual function is achieved. Here, we report the use of a recombinant RSV virus with a FLAG-tagged large polymerase protein, L, to characterize and localize RSV ribonucleocapsid structures during the early and late stages of viral infection. Through proximity ligation assays and super-resolution microscopy, viral RNA and proteins in the ribonucleocapsid complex were revealed to dynamically rearrange over time, particularly between 6 and 8 hours post infection, suggesting a connection between the ribonucleocapsid structure and its function. The timing of ribonucleocapsid rearrangement corresponded with an increase in RSV genome RNA accumulation, indicating that this rearrangement is likely involved with the onset of RNA replication and secondary transcription. Additionally, early overexpression of RSV M2-2 from in vitro transcribed mRNA was shown to inhibit virus infection by rearranging the ribonucleocapsid complex. Collectively, these results detail a critical understanding into the localization and activity of RSV L and the ribonucleocapsid complex during RSV infection.
Virology, 2003
Bacterially expressed nucleocapsid (N) protein, from respiratory syncytial virus (RSV), was used to investigate RNA binding in a modified North-Western blotting protocol. The recombinant protein demonstrated no sequence specificity in binding RNA representing either the antigenomic leader sequence or the nonspecific sequence derived from a plasmid vector. When recombinant N was purified on CsCl gradients, two types of structure, both with densities indicating that they contained RNA, could be visualised by negative-stain electron microscopy. Structures similar to nucleocapsids (NC) from RSV-infected cells were observed, as were ring structures. A small fragment of the N (amino acids 1-92) was all that was required for the production of NC-like structures. Another mutant with an internal deletion could form rings but not NC-like structures. This suggests that this domain (amino acids 121-160) may be important for maintaining helical stability. Further analysis has also identified a potential site in the amino-terminus that may be involved in an interaction with the phosphoprotein. A domain model of the RSV N protein is presented which, similar to that of other paramyxoviruses, supports the idea that the amino-terminus is important for NC assembly.
In vitro trackable assembly of RNA-specific nucleocapsids of the respiratory syncytial virus
Journal of Biological Chemistry, 2019
The templates for transcription and replication by respiratory syncytial virus (RSV) polymerase are helical nucleocapsids (NCs), formed by viral RNAs that are encapsidated by the nucleoprotein (N). Proper NC assembly is vital for RSV polymerase to engage the RNA template for RNA synthesis. Previous studies of NCs or nucleocapsid-like particles (NCLPs) from RSV and other nonsegmented negative-sense RNA viruses have provided insights into the overall NC architecture. However, in these studies, the RNAs were either random cellular RNAs or average viral genomic RNAs. An in-depth mechanistic understanding of NCs has been hampered by lack of an in vitro assay that can track NC or NCLP assembly. Here we established a protocol to obtain RNA-free N protein (N0) and successfully demonstrated the utility of a new assay for tracking assembly of N with RNA oligonucleotides into NCLPs. We discovered that the efficiency of the NCLP (N–RNA) assembly depends on the length and sequence of the RNA inc...
Virus Research, 2008
Human respiratory syncytial virus (HRSV) P protein, 241 amino acid long, is a structural homotetrameric phosphoprotein. Viral transcription and replication processes are dependent on functional P protein interactions inside viral ribonucleoprotein complexes (RNPs). Binding capacity to RNPs proteins and transcription and replication complementation analyses, using inactive P protein variants, have identified residues essential for functional interactions with itself, L, N and M2-1 proteins. P protein may establish some of these interactions as monomer, but efficient viral transcription and replication requires P protein oligomerization through the central region of the molecule. A structurally stable three-dimensional model has been generated in silico for this region (residues 98-158). Our analysis has indicated that P protein residues L135, D139, E140 and L142 are involved in homotetramerization. Additionally, the residues D136, S156, T160 and E179 appear to be essential for P protein activity on viral RNA synthesis and very high turnover phosphorylation at S143, T160 and T210 could regulate it. Thus, compounds targeted to those of these residues, located in the modeled three-dimensional structure, could have specific anti-HRSV effect.
Structure of the Respiratory Syncytial Virus Polymerase Complex
Cell, 2019
Highlights d Cryo-EM structure of RSV L bound by tetrameric RSV P solved to 3.2 Å d P tetramer adopts an asymmetric tentacular arrangement when bound to L d L priming loop adopts elongation-compatible state without PRNTase-RdRp separation d Structure rationalizes escape from small-molecule antivirals
Cryo-EM structure of the respiratory syncytial virus RNA polymerase
Nature Communications, 2020
The respiratory syncytial virus (RSV) RNA polymerase, constituted of a 250 kDa large (L) protein and tetrameric phosphoprotein (P), catalyzes three distinct enzymatic activities — nucleotide polymerization, cap addition, and cap methylation. How RSV L and P coordinate these activities is poorly understood. Here, we present a 3.67 Å cryo-EM structure of the RSV polymerase (L:P) complex. The structure reveals that the RNA dependent RNA polymerase (RdRp) and capping (Cap) domains of L interact with the oligomerization domain (POD) and C-terminal domain (PCTD) of a tetramer of P. The density of the methyltransferase (MT) domain of L and the N-terminal domain of P (PNTD) is missing. Further analysis and comparison with other RNA polymerases at different stages suggest the structure we obtained is likely to be at an elongation-compatible stage. Together, these data provide enriched insights into the interrelationship, the inhibitors, and the evolutionary implications of the RSV polymerase.
Journal of Medicinal Chemistry, 2014
Coronaviruses (CoVs) cause numerous diseases, including Middle East respiratory syndrome and severe acute respiratory syndrome, generating significant healthrelated and economic consequences. CoVs encode the nucleocapsid (N) protein, a major structural protein that plays multiple roles in the virus replication cycle and forms a ribonucleoprotein complex with the viral RNA through the N protein's N-terminal domain (N-NTD). Using human CoV-OC43 (HCoV-OC43) as a model for CoV, we present the 3D structure of HCoV-OC43 N-NTD complexed with ribonucleoside 5′-monophosphates to identify a distinct ribonucleotide-binding pocket. By targeting this pocket, we identified and developed a new coronavirus N protein inhibitor, N-(6-oxo-5,6-dihydrophenanthridin-2-yl)(N,N-dimethylamino)acetamide hydrochloride (PJ34), using virtual screening; this inhibitor reduced the N protein's RNA-binding affinity and hindered viral replication. We also determined the crystal structure of the N-NTD−PJ34 complex. On the basis of these findings, we propose guidelines for developing new N protein-based antiviral agents that target CoVs.