Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats (original) (raw)
Related papers
The Effects of Light at Night on Circadian Clocks and Metabolism
Endocrine Reviews, 2014
Most organisms display endogenously produced ϳ24 h fluctuations in physiology and behavior, termed circadian rhythms. Circadian rhythms are driven by a transcriptional-translational feedback loop that is hierarchically expressed throughout the brain and body, with the suprachiasmatic nucleus of the hypothalamus serving as the master circadian oscillator at the top of the hierarchy. Appropriate circadian regulation is important for many homeostatic functions including energy regulation. Multiple genes involved in nutrient metabolism display rhythmic oscillations and metabolically related hormones such as glucagon, insulin, ghrelin, leptin, and corticosterone are released in a circadian fashion. Mice harboring mutations in circadian clock genes alter feeding behavior, endocrine signaling, and dietary fat absorption. Moreover, misalignment between behavioral and molecular circadian clocks can result in obesity in both rodents and humans. Importantly, circadian rhythms are most potently synchronized to the external environment by light information and exposure to light at night potentially disrupts circadian system function. Since the advent of electric lights around the turn of the 20th century, exposure to artificial and irregular light schedules has become commonplace. The increase in exposure to light at night parallels the global increase in the prevalence of obesity and metabolic disorders. In this review, we propose that exposure to light at night alters metabolic function through disruption of the circadian system. We first provide an introduction to the circadian system, with a specific emphasis on the effects of light on circadian rhythms. Next we address interactions between the circadian system and metabolism. Finally, we review current experimental and epidemiological work directly associating exposure to light at night and metabolism.
Disturbances of Hormonal Circadian Rhythms by Light Pollution
International Journal of Molecular Sciences
The circadian rhythms evolved to anticipate and cope with cyclic changes in environmental conditions. This adaptive function is currently compromised by increasing levels of artificial light at night (ALAN), which can represent a risk for the development of diseases of civilisation. The causal links are not completely understood, and this featured review focuses on the chronodisruption of the neuroendocrine control of physiology and behaviour by dim ALAN. The published data indicate that low levels of ALAN (2–5 lux) can attenuate the molecular mechanisms generating circadian rhythms in the central oscillator, eliminate the rhythmic changes in dominant hormonal signals, such as melatonin, testosterone and vasopressin, and interfere with the circadian rhythm of the dominant glucocorticoid corticosterone in rodents. These changes are associated with a disturbed daily pattern of metabolic changes and behavioural rhythms in activity and food and water intake. The increasing levels of ALA...
International Journal of Molecular Sciences, 2020
The disruption of circadian rhythms by environmental conditions can induce alterations in body homeostasis, from behavior to metabolism. The light:dark cycle is the most reliable environmental agent, which entrains circadian rhythms, although its credibility has decreased because of the extensive use of artificial light at night. Light pollution can compromise performance and health, but underlying mechanisms are not fully understood. The present review assesses the consequences induced by constant light (LL) in comparison with dim light at night (dLAN) on the circadian control of metabolism and behavior in rodents, since such an approach can identify the key mechanisms of chronodisruption. Data suggest that the effects of LL are more pronounced compared to dLAN and are directly related to the light level and duration of exposure. Dim LAN reduces nocturnal melatonin levels, similarly to LL, but the consequences on the rhythms of corticosterone and behavioral traits are not uniform a...
Journal of the American Association for Laboratory Animal Science
Light and lighting protocols of animal research facilities are critically important to the outcomes of biomedical research that uses animals. Previous studies from our laboratory showed that the wavelength (color) of light in animal housing areas affects the nocturnal melatonin signal that temporally coordinates circadian rhythms in rodents. Here, we tested the hypothesis that exposure to LED light enriched in the blue-appearing portion (460-480 nm) of the visible spectrum during the light phase (bLAD) influences circadian concentrations of select neuroendocrine hormones in adolescent Sprague–Dawley rats. Male and female rats (4 to 5 wk old) were housed on a novel IVC system under a 12L:12D in either cool-white fluorescent (control, n = 72) or bLAD (experimental, n = 72) lighting. Every third day, body weight and food and water consumption were measured. On Day 30, rats were anesthetized with ketamine/xylazine and terminal collection of arterial blood was performed to quantify serum...
The Chinese journal of physiology, 2007
Diurnal variation of glucose tolerance and insulin action was studied in male Sprague-Dawley rats with a normal or reversed light-dark cycle. A series of experiments conducted was at 12 AM and 12 PM in the two groups. All measurements were separated by a recovery period of at least 3 days and preceded by a 16-hour fast. Glucose tolerance and insulin action were measured by both an oral glucose tolerance test and intraperitoneal insulin tolerance test. Normal light-dark cycle rats had significantly (P < 0.05) greater insulin sensitivity at 12 PM than at 12 AM, whereas reversed light-dark cycle rats had the opposite results (P < 0.05). Rats in the normal light-dark cycle group had a significantly higher growth hormone concentration at 12 AM than at 12 PM, whereas rats in the reversed group had the opposite results. Measurement of insulin-stimulated glucose uptake of isolated adipocytes preincubated with or without 100 ng/ml growth hormone at 37 degrees C for 5 hours revealed tha...
Quantifying light-dependent circadian disruption in humans and animal models
Chronobiology International, 2014
Although circadian disruption is an accepted term, little has been done to develop methods to quantify the degree of disruption or entrainment individual organisms actually exhibit in the field. A variety of behavioral, physiological and hormonal responses vary in amplitude over a 24-hour period and the degree to which these circadian rhythms are synchronized to the daily light-dark cycle can be quantified with a technique known as phasor analysis. Several studies have been carried out using phasor analysis in an attempt to measure circadian disruption exhibited by animals and by humans. To perform these studies, species-specific light measurement and light delivery technologies had to be developed based upon a fundamental understanding of circadian phototransduction mechanisms in the different species. When both nocturnal rodents and diurnal humans experienced different species-specific light-dark shift schedules, they showed, based upon phasor analysis of the light-dark and activity-rest patterns, similar levels of light-dependent circadian disruption. Indeed, both rodents and humans show monotonically increasing and quantitatively similar levels of light-dependent circadian disruption with increasing shift-nights per week. Thus, phasor analysis provides a method for quantifying circadian disruption in the field and in the laboratory as well as a bridge between ecological measurements of circadian entrainment in humans and parametric studies of circadian disruption in animal models, including nocturnal rodents.
Dark matters: effects of light at night on metabolism
The Proceedings of the Nutrition Society, 2018
Life on earth has evolved during the past several billion years under relatively bright days and dark night conditions. The wide-spread adoption of electric lights during the past century exposed animals, both human and non-human, to significant light at night for the first time in their evolutionary history. Endogenous circadian clocks depend on light to entrain to the external daily environment and seasonal rhythms depend on clear nightly melatonin signals to assess time of year. Thus, light at night can derange temporal adaptations. Indeed, disruption of naturally evolved light-dark cycles results in several physiological and behavioural changes with potentially serious implications for physiology, behaviour and mood. In this review, data from night-shift workers on their elevated risk for metabolic disorders, as well as data from animal studies will be discussed. Night-shift workers are predisposed to obesity and dysregulated metabolism that may result from disrupted circadian r...
Exposure to dim light at night alters daily rhythms of glucose and lipid metabolism in rats
Frontiers in Physiology, 2022
Nocturnal light pollution has been rapidly increasing during the last decades and even though dim artificial light at night (ALAN) has been associated with metabolic diseases, its mechanism is still far from clear. Therefore, the aim of our study was to thoroughly analyze the effects of ALAN on energy metabolism, metabolites, metabolic hormones, and gene expression. Male Wistar rats were kept in either the standard light:dark (12:12) cycle or exposed to ALAN (~2 lx) during the whole 12-h dark phase for 2 weeks. Energy metabolism was measured in metabolic cages. In addition, we measured plasma and hepatic metabolites, clock and metabolic gene expression in the liver and epididymal adipose tissue, and plasma hormone levels. In ALAN rats, we observed an unexpected transitory daytime peak of locomotor activity and a suppression of the peak in locomotor activity at the beginning of the dark period. These changes were mirrored in the respiratory exchange ratio. Plasma metabolites became arrhythmic, and plasma and hepatic cholesterol levels were increased. Lost rhythmicity of metabolites was associated with disrupted behavioral rhythms and expression of metabolic genes. In the liver, the rhythms of metabolic sensors were either phase-advanced (Ppara, Pgc1a, Nampt) or arrhythmic (Sirt1, Lxra) after ALAN. The rhythmic pattern of Ppara and Sirt1 was abolished in the adipose tissue. In the liver, the amplitude of the daily rhythm in glycogen content was attenuated, the Glut2 rhythm was phase-advanced and Foxo1 lost its daily rhythmicity. Moreover, hepatic Foxo1 and Gck were up-regulated after ALAN. Interestingly, several parameters of lipid metabolism gained rhythmicity (adiponectin, Hmgcs2, Lpl, Srebf1c) in the liver, whereas Noct became arrhythmic in the adipose tissue. Peripheral clock genes maintained their robust oscillations with small shifts in their acrophases. Our data show that even a low level of ALAN can induce changes in the daily pattern of behavior and energy metabolism, and disturb daily rhythms of genes encoding key metabolic sensors and components of metabolic pathways in the liver and adipose tissue. Disturbed metabolic rhythms by ALAN could represent a serious risk factor for the development and progression of metabolic diseases.
Ilar Journal, 2019
Light is a key extrinsic factor to be considered in operations and design of animal room facilities. Over the past four decades, many studies on typical laboratory animal populations have demonstrated impacts on neuroendocrine, neurobehavioral, and circadian physiology. These effects are regulated independently from the defined physiology for the visual system. The range of physiological responses that oscillate with the 24 hour rhythm of the day include sleep and wakefulness, body temperature, hormonal secretion, and a wide range of other physiological parameters. Melatonin has been the chief neuroendocrine hormone studied, but acute light-induced effects on corticosterone as well as other hormones have also been observed. Within the last two decades, a new photosensory system in the mammalian eye has been discovered. A small set of retinal ganglion cells, previously thought to function as a visual output neuron, have been shown to be directly photosensitive and act differently from the classic photoreceptors of the visual system. Understanding the effects of light on mammalian physiology and behavior must take into account how the classical visual photoreceptors and the newly discovered ipRGC photoreceptor systems interact. Scientists and facility managers need to appreciate lighting impacts on circadian, neuroendocrine, and neurobehavioral regulation in order to improve lighting of laboratory facilities to foster optimum health and well-being of animals.
International Journal of Molecular Sciences
Artificial light at night (ALAN) is considered an environmental risk factor that can interfere with the circadian control of the endocrine system and metabolism. We studied the impact of ALAN during pregnancy on the hormonal and biochemical parameters in rat pups at postnatal (P) days P3, P10, and P20. Control dams (CTRL) were kept in a standard light-dark regime, and ALAN dams were exposed to dim ALAN (<2 lx) during the whole pregnancy. A plasma melatonin rhythm was found in all CTRL groups, whereas in ALAN pups, melatonin was not rhythmic at P3, and its amplitude was lowered at P10; no differences were found between groups at P20. Plasma corticosterone was rhythmic at P20 in both groups, with decreased mesor in ALAN pups. Plasma thyroid hormones exhibited an inconsistent developmental pattern, and vasopressin levels were suppressed at the beginning of the dark phase at P20 in ALAN compared to CTRL. Glucose and cholesterol showed significant daily rhythms in CTRL but not in ALAN...