Mycobacterium ulcerans DNA Not Detected in Faecal Samples from Buruli Ulcer Patients: Results of a Pilot Study (original) (raw)
Related papers
Detection of Mycobacterium ulcerans in the Environment Predicts Prevalence of Buruli Ulcer in Benin
PLoS Neglected Tropical Diseases, 2012
Background: Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU). In West Africa there is an association between BU and residence in low-lying rural villages where aquatic sources are plentiful. Infection occurs through unknown environmental exposure; human-to-human infection is rare. Molecular evidence for M. ulcerans in environmental samples is well documented, but the association of M. ulcerans in the environment with Buruli ulcer has not been studied in West Africa in an area with accurate case data.
Domestic animals infected with Mycobacterium ulcerans-Implications for transmission to humans
PLoS neglected tropical diseases, 2018
The environmental pathogen, Mycobacterium ulcerans (MU) can infect both humans and animals and cause Buruli ulcer (BU) disease. However, its mode(s) of transmission from the colonized environment to human/animal hosts remain unclear. In Australia, MU can infect both wildlife and domestic mammals. Till date, BU-like lesions have only been reported in wildlife in Africa. This warrants a thorough assessment of possible MU in domestic animals in Africa. Here, we screened roaming domesticated animals that share the human microhabitat in two different BU endemic sites, Sedje-Denou in Benin and Akonolinga in Cameroon, for MU lesions. We screened roaming mammals and birds across 3 endemic villages of Sedje-Denou in Southern Benin and 6 endemic villages of Akonolinga in Cameroon. After approval from relevant authorities, specimens (wound swabs and tissue fragments) were collected from animals with open or active lesion and systematically screened to detect the presence of MU though the diagn...
Journal of Microbiological Methods, 2009
Mycobacterium ulcerans is the causative agent of Buruli ulcer, the third most common mycobacterial disease in humans after tuberculosis and leprosy. Although the disease is associated with aquatic ecosystems, cultivation of the bacillus from the environment is difficult to achieve. Therefore, at the moment, research is based on the detection by PCR of the insertion sequence IS2404 present in M. ulcerans and some closely related mycobacteria. In the present study, we compared four DNA extraction methods for detection of M. ulcerans DNA, namely the one tube cell lysis and DNA extraction procedure (OT), the FastPrep procedure (FP), the modified Boom procedure (MB), and the Maxwell® 16 Procedure (M16). The methods were performed on serial dilutions of M. ulcerans, followed by PCR analysis with different PCR targets in M. ulcerans to determine the detection limit (DL) of each method. The purity of the extracted DNA and the time and effort needed were compared as well. All methods were performed on environmental specimens and the two best methods (MB and M16) were tested on clinical specimens for detection of M. ulcerans DNA. When comparing the DLs of the DNA extraction methods, the MB and M16 had a significantly lower DL than the OT and FP. For the different PCR targets, IS2404 showed a significantly lower DL than mlsA, MIRU1, MIRU5 and VNTR6. The FP and M16 were considerably faster than the MB and OT, while the purity of the DNA extracted with the MB was significantly higher than the DNA extracted with the other methods. The MB performed best on the environmental and clinical specimens. This comparative study shows that the modified Boom procedure, although lengthy, provides a better method of DNA extraction than the other methods tested for detection and identification of M. ulcerans in both clinical and environmental specimens. j o u r n a l h o m e p a g e : w w w. e l s ev i e r. c o m / l o c a t e / j m i c m e t h 157 L. Durnez et al. / Journal of Microbiological Methods 76 (2009) 152-158
Snapshot fecal survey of domestic animals in rural Ghana for Mycobacterium ulcerans
PeerJ, 2016
Identifying the source reservoirs of Mycobacterium ulcerans is key to understanding the mode of transmission of this pathogen and controlling the spread of Buruli ulcer (BU). In Australia, the native possum can harbor M. ulcerans in its gastrointestinal tract and shed high concentrations of the bacteria in its feces. To date, an analogous animal reservoir in Africa has not been identified. Here we tested the hypothesis that common domestic animals in BU endemic villages of Ghana are reservoir species analogous to the Australian possum. Using linear-transects at 10-meter intervals, we performed systematic fecal surveys across four BU endemic villages and one non-endemic village in the Asante Akim North District of Ghana. One hundred and eighty fecal specimens from a single survey event were collected and analyzed by qPCR for the M. ulcerans diagnostic DNA targets IS2404 and KR-B. Positive and negative controls performed as expected but all 180 test samples were negative. This structu...
Emerging Infectious Diseases, 2017
To identify potential reservoirs/vectors of Mycobacterium ulcerans in northern Queensland, Australia, we analyzed environmental samples collected from the Daintree River catchment area, to which Buruli ulcer is endemic, and adjacent coastal lowlands by species-specific PCR. We detected M. ulcerans DNA in soil, mosquitoes, and excreta of bandicoots, which are small terrestrial marsupials.
PLoS neglected tropical diseases, 2018
Buruli Ulcer (BU) is a neglected tropical skin infection caused by Mycobacterium ulcerans. Residence near aquatic areas has been identified as an important source of transmission of M. ulcerans with increased risk of contracting Buruli ulcer. However, the reservoir and the mode of transmission are not yet well known. The aim of this study was to identify the presence of M. ulcerans in the environment and its relationship with Buruli ulcer occurrence in Zio and Yoto districts of the maritime region in south Togo. A total of 219 environmental samples including soil (n = 119), water (n = 65), biofilms/plants (n = 29) and animals' feces (n = 6) were collected in 17 villages of Zio and Yoto districts of the maritime region in Togo. DNA of M. ulcerans including IS2404 and IS2606 insertions sequences and mycolactone ketoreductase-B gene (KR-B) was detected using real time PCR amplification (qPCR) technique. In parallel, clinical samples of patients were tested to establish a comparison...
Source Tracking Mycobacterium ulcerans Infections in the Ashanti Region, Ghana
PLoS neglected tropical diseases, 2015
Although several studies have associated Mycobacterium ulcerans (MU) infection, Buruli ulcer (BU), with slow moving water bodies, there is still no definite mode of transmission. Ecological and transmission studies suggest Variable Number Tandem Repeat (VNTR) typing as a useful tool to differentiate MU strains from other Mycolactone Producing Mycobacteria (MPM). Deciphering the genetic relatedness of clinical and environmental isolates is seminal to determining reservoirs, vectors and transmission routes. In this study, we attempted to source-track MU infections to specific water bodies by matching VNTR profiles of MU in human samples to those in the environment. Environmental samples were collected from 10 water bodies in four BU endemic communities in the Ashanti region, Ghana. Four VNTR loci in MU Agy99 genome, were used to genotype environmental MU ecovars, and those from 14 confirmed BU patients within the same study area. Length polymorphism was confirmed with sequencing. MU w...
Potential Animal Reservoir of Mycobacterium ulcerans: Systematic Review
2018
Mycobacterium ulcerans is the causative agent of the Buruli ulcer, also known, in Australia, as Daintree ulcer or Bairnsdale ulcer. This destructive skin disease is characterized by extensive and painless necrosis of the skin and soft tissue with the formation of large ulcers, commonly on the leg or arm. To date, 33 countries with tropical, subtropical and temperate climates in Africa, the Americas, Asia and the Western Pacific have reported cases of Buruli Ulcer. The disease is rarely fatal, although it may lead to permanent disability and/ or disfigurement if not treated appropriately or in time. It is the third most common mycobacterial infection in the world after tuberculosis and leprosy. The precise mode of transmission of M. ulcerans is yet to be elucidated. Nevertheless, it is possible that the mode of transmission varies with different geographical areas and epidemiological settings. The knowledge about the possible route of transmission and potential animal reservoir of M....