Monitoring global messenger RNA changes in externally controlled microarray experiments (original) (raw)

Within the fold: assessing differential expression measures and reproducibility in microarray assays

Wei Liang

Genome Biology, 2002

View PDFchevron_right

An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression

James Minor

Nucleic Acids Research, 2001

View PDFchevron_right

Normalization and quantification of differential expression in gene expression microarrays

Christine Steinhoff

Briefings in Bioinformatics, 2006

View PDFchevron_right

RNA expression microarrays (REMs), a high-throughput method to measure differences in gene expression in diverse biological samples

Raquel Norel

Nucleic Acids Research, 2004

View PDFchevron_right

Microarray Data Analysis Toolbox (MDAT): for normalization, adjustment and analysis of gene expression data

Michael Centola

Bioinformatics, 2004

View PDFchevron_right

Adjustments and measures of differential expression for microarray data

A. Tsodikov

Bioinformatics, 2002

View PDFchevron_right

RNA-Seq Evaluating Several Custom Microarrays Background Correction and Gene Expression Data Normalization Systems

Nafan Diarrassouba

Biotechnology Journal International, 2017

View PDFchevron_right

The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements

Danielle Thierry-mieg

Nature biotechnology, 2006

View PDFchevron_right

Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation

Daniele Biasci

BMC Genomics, 2014

View PDFchevron_right

Centola M: Microarray Data Analysis Toolbox (MDAT): for normalization, adjustment and analysis of gene expression data. Bioinformatics

Michael Centola

2004

View PDFchevron_right

Microarray probe expression measures, data normalization and statistical validation

Silvia Saviozzi

Comparative and functional genomics, 2003

View PDFchevron_right

Microarray data analysis for differential expression: a tutorial

Geoff McLachlan

Puerto Rico health sciences journal, 2009

View PDFchevron_right

Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma

Ilhem Diboun

BMC Genomics, 2006

View PDFchevron_right

Three microarray platforms: an analysis of their concordance in profiling gene expression

lisa gangi

BMC Genomics, 2005

View PDFchevron_right

maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments

A. Ferrer, Ana Conesa

Bioinformatics, 2006

View PDFchevron_right

Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq

Jiri Raboch

Medical science monitor basic research, 2014

View PDFchevron_right

A calibration method for estimating absolute expression levels from microarray data

Kathleen Marchal

Bioinformatics, 2006

View PDFchevron_right

Robust Local Normalization Of Gene Expression Microarray Data

Paul Wolber

2000

View PDFchevron_right

CLEAR-test: Combining inference for differential expression and variability in microarray data analysis

Miguel Angel Fernández Peinado

Journal of Biomedical Informatics, 2008

View PDFchevron_right

Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range

Aimée Dudley

2002

View PDFchevron_right

Calibration of microarray gene-expression data

Hilmar Berger

Methods in molecular biology (Clifton, N.J.), 2010

View PDFchevron_right

Statistical Analysis of Gene Expression Microarrays

Tanzy Love

Applied statistics in agriculture, 2005

View PDFchevron_right