Monitoring global messenger RNA changes in externally controlled microarray experiments (original) (raw)
Within the fold: assessing differential expression measures and reproducibility in microarray assays
Wei Liang
Genome Biology, 2002
View PDFchevron_right
An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression
James Minor
Nucleic Acids Research, 2001
View PDFchevron_right
Normalization and quantification of differential expression in gene expression microarrays
Christine Steinhoff
Briefings in Bioinformatics, 2006
View PDFchevron_right
RNA expression microarrays (REMs), a high-throughput method to measure differences in gene expression in diverse biological samples
Raquel Norel
Nucleic Acids Research, 2004
View PDFchevron_right
Microarray Data Analysis Toolbox (MDAT): for normalization, adjustment and analysis of gene expression data
Michael Centola
Bioinformatics, 2004
View PDFchevron_right
Adjustments and measures of differential expression for microarray data
A. Tsodikov
Bioinformatics, 2002
View PDFchevron_right
RNA-Seq Evaluating Several Custom Microarrays Background Correction and Gene Expression Data Normalization Systems
Nafan Diarrassouba
Biotechnology Journal International, 2017
View PDFchevron_right
The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements
Danielle Thierry-mieg
Nature biotechnology, 2006
View PDFchevron_right
Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation
Daniele Biasci
BMC Genomics, 2014
View PDFchevron_right
Centola M: Microarray Data Analysis Toolbox (MDAT): for normalization, adjustment and analysis of gene expression data. Bioinformatics
Michael Centola
2004
View PDFchevron_right
Microarray probe expression measures, data normalization and statistical validation
Silvia Saviozzi
Comparative and functional genomics, 2003
View PDFchevron_right
Microarray data analysis for differential expression: a tutorial
Geoff McLachlan
Puerto Rico health sciences journal, 2009
View PDFchevron_right
Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma
Ilhem Diboun
BMC Genomics, 2006
View PDFchevron_right
Three microarray platforms: an analysis of their concordance in profiling gene expression
lisa gangi
BMC Genomics, 2005
View PDFchevron_right
maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments
A. Ferrer, Ana Conesa
Bioinformatics, 2006
View PDFchevron_right
Comparing bioinformatic gene expression profiling methods: microarray and RNA-Seq
Jiri Raboch
Medical science monitor basic research, 2014
View PDFchevron_right
A calibration method for estimating absolute expression levels from microarray data
Kathleen Marchal
Bioinformatics, 2006
View PDFchevron_right
Robust Local Normalization Of Gene Expression Microarray Data
Paul Wolber
2000
View PDFchevron_right
CLEAR-test: Combining inference for differential expression and variability in microarray data analysis
Miguel Angel Fernández Peinado
Journal of Biomedical Informatics, 2008
View PDFchevron_right
Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range
Aimée Dudley
2002
View PDFchevron_right
Calibration of microarray gene-expression data
Hilmar Berger
Methods in molecular biology (Clifton, N.J.), 2010
View PDFchevron_right
Statistical Analysis of Gene Expression Microarrays
Tanzy Love
Applied statistics in agriculture, 2005
View PDFchevron_right