A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo (original) (raw)

New Basic Membrane-Destabilizing Peptides for Plasmid-Based Gene Delivery in Vitro and in Vivo

Molecular Therapy, 2002

We have designed new basic amphiphilic peptides, ppTG1 and ppTG20 (20 amino acids), and evaluated their efficiencies in vitro and in vivo as single-component gene transfer vectors. ppTG1 and ppTG20 bind to nucleic acids and destabilize liposomes consisting of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and cholesterol (3:1 mol/mol) at pH 5 and pH 7. Complexes of plasmid DNA and ppTG1 gave rise to efficient transfection in a variety of human and murine cell lines at low charge ratios ([+/-] between 1 and 2). In cell culture experiments, such vectors were superior to the membrane-destabilizing peptide KALA. In comparison with cationic lipid-, dendrimer-, and polymer-based transfection agents like Superfect, polyethylenimine (PEI), and Lipofectin, ppTG1 vectors showed good transfection efficiencies, especially at low DNA doses. Moreover, we demonstrated for the first time successful gene transfer in living animals with a single-component peptide vector. In the mouse, intravenous injection of a luciferase expression plasmid complexed with ppTG1 or ppTG20 led to significant gene expression in the lung 24 hours after injection. Structure-function studies with ppTG1, ppTG20, and sequence variants suggest that the high gene transfer activity of these peptides is correlated with their propensity to exist in ␣-helical conformation, which seems to be strongly influenced by the nature of the hydrophobic amino acids. , available online at http://www.idealibrary.com on IDEAL new vectors represent effective transfection agents and promising components of nonviral vector formulations for therapeutic gene transfer applications.

A Physicochemical Approach for Predicting the Effectiveness of Peptide-Based Gene Delivery Systems for Use in Plasmid-Based Gene Therapy

Biophysical Journal, 1998

Novel synthetic peptides, based on carrier peptide analogs (YKAK n WK) and an amphipathic peptide (GLFEA-LLELLESLWELLLEA), have been formulated with DNA plasmids to create peptide-based gene delivery systems. The carrier peptides are used to condense plasmids into nanoparticles with a hydrodynamic diameter (D H ) ranging from 40 to 200 nm, which are sterically stable for over 100 h. Size and morphology of the carrier peptide/plasmid complex have been determined by photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM), respectively. The amphipathic peptide is used as a pH-sensitive lytic agent to facilitate release of the plasmid from endosomes after endocytosis of the peptide/plasmid complex. Hemolysis assays have shown that the amphipathic peptide destabilizes lipid bilayers at low pH, mimicking the properties of viral fusogenic peptides. However, circular dichroism studies show that unlike the viral fusion peptides, this amphipathic peptide loses some of its ␣-helical structure at low pH in the presence of liposomes. The peptide-based gene delivery systems were tested for transfection efficiency in a variety of cell lines, including 14-day C 2 C 12 mouse myotubes, using gene expression systems containing the ␤-galactosidase reporter gene. Transfection data demonstrate a correlation between in vitro transfection efficiency and the combination of several physical properties of the peptide/plasmid complexes, including 1) DNA dose, 2) the zeta potential of the particle, 3) the requirement of both lytic and carrier peptides, and 4) the number of lysine residues associated with the carrier peptide. Transfection data on 14-day C 2 C 12 myotubes utilizing the therapeutic human growth hormone gene formulated in an optimal peptide gene delivery system show an increase in gene expression over time, with a maximum in protein levels at 96 h (ϳ18 ng/ml).

PepFect14 Peptide Vector for Efficient Gene Delivery in Cell Cultures

Molecular Pharmaceutics, 2013

The successful applicability of gene therapy approaches will heavily rely on the development of efficient and safe nonviral gene delivery vectors, for example, cellpenetrating peptides (CPPs). CPPs can condense oligonucleotides and plasmid DNA (pDNA) into nanoparticles, thus allowing the transfection of genetic material into cells. However, despite few promising attempts, CPP-mediated pDNA delivery has been relatively inefficient due to the unfavorable nanoparticle characteristics or the nanoparticle entrapment to endocytic compartments. In many cases, both of these drawbacks could be alleviated by modifying CPPs with a stearic acid residue, as demonstrated in the delivery of both the pDNA and the short oligonucleotides. In this study, PepFect14 (PF14) peptide, previously used for the transport of shorter oligonucleotides, is demonstrated to be suited also for the delivery of pDNA. It is shown that PF14 forms stable nanoparticles with pDNA with a negative surface charge and size of around 130−170 nm. These nanoparticles facilitate efficient gene delivery and expression in a variety of regular adherent cell lines and also in difficult-to-transfect primary cells. Uptake studies indicate that PF14/pDNA nanoparticles are utilizing class A scavenger receptors (SCARA) and caveolae-mediated endocytosis as the main route for cellular internalization. Conclusively, PF14 is an efficient nonviral vector for gene delivery.

An Insight into the Use of Cationic Peptides for Plasmid DNA Delivery in Cells

In this work, we contribute an insight into the ability of cationic peptides for the delivery of plasmid DNA in cells. Although most peptides used for cellular transfection are cationic, not all of them possess this potential. Using plasmid DNA bearing reporter genes and cells of the breast cancer MDA-MB 435 line, we show at first that only peptides in an-helical structure can give high levels whereas peptides with a-strand structure cannot. Amphipathic peptides rich in lysine, namely L 10 K 5 or L 13 K 6 , adopting both an-helical structure are able to be used for this task. Subsequently, we show that protamine, equally rich in basic arginine, but not having an-helical structure, cannot alone efficiently deliver DNA. However, it improved the transfection level by cationic liposomes, undoubtedly by a condensing effect. This enhancement in transfection by protamine was not observed using the peptide L 13 K 6 and this peptide did not behave as protamine to enhance the transfection level of cationic liposomes.

Branched amphiphilic peptides: an alternate non-viral gene delivery system

2014

Success for gene therapy clinical protocols depends on the design of safe and efficient gene carriers. Nature had already designed efficient DNA or RNA delivery devices, namely virus particles. However, the risk of insertional mutagenesis has limited their clinical use. Alternatively, safer approaches involving non-viral carriers have been and continue to be developed. While they have been reported to be less efficient than viral vectors, adding genome editing elements to pDNA makes the integration of corrective sequence site specific moving non-viral gene delivery systems closer to clinical applications. Over the last decade, peptides have emerged as a new family of potential carriers in gene therapy. Peptides are easy to synthesize, quite stable and expected to produce minimally immunogenic and inflammatory responses. We recently reported on a new class of Branched Amphiphilic Peptides Capsules (BAPCs) that self-assemble into extremely stable nano-spheres. BAPCs display a uniform size of ∼20 nm if they are incubated at 4 • C and they retain their size at elevated temperatures. In the presence of DNA, they can act as cationic nucleation centers around which DNA winds generating peptide-DNA complexes with a size ranging from 50nm to 100nm. However, if BACPs are not incubated at 4 • C, the pattern of interaction with DNA differs. Depending of the peptide/DNA ratios, the peptides either coat the plasmid surface forming nano-fibers (0.5-1 µM in length) or condense the plasmid into nano-sized structures (100-400nm). Different gene delivery efficiencies are observed for the three types of assemblies. The structure where the DNA wraps around BAPCs display much higher transfection efficiencies in HeLa cells in comparison to the other two morphologies and the commercial lipid reagent Lipofectin. As a proof of concept, pDNA was delivered in vivo, as a vaccine DNA encoding E7 oncoprotein of HPV-16. It elicited an immune response activating CD8 + T cells and provided anti-tumor protection in a murine model.

Application of membrane-active peptides for nonviral gene delivery

Advanced Drug Delivery Reviews, 1999

A variety of membrane-modifying agents including pH-specific fusogenic or lytic peptides, bacterial proteins, lipids, glycerol, or inactivated virus particles have been evaluated for the enhancement of DNA-polycation complex-based gene transfer. The enhancement depends on the characteristics of both the cationic carrier for DNA and the membrane-modifying agent. Peptides derived from viral sequences such as the N-terminus of influenza virus haemagglutinin HA-2, the N-terminus of rhinovirus HRV2 VP-1 protein, and other synthetic or natural sequences such as the amphipathic peptides GALA, KALA, EGLA, JTS1, or gramicidin S have been tested. Ligand-polylysine-mediated gene transfer can be improved up to more than 1000-fold by membrane-active compounds. Other polycations like dendrimers or polyethylenimines as well as several cationic lipids provide a high transfection efficiency per se. Systems based on these polymers or lipids are only slightly enhanced by endosomolytic peptides or adenoviruses. Electroneutral cationic lipid-DNA complexes however can be strongly improved by the addition of membrane-active peptides.

An optimized amphiphilic cationic peptide as an efficient non-viral gene delivery vector

The Journal of Gene Medicine, 2000

Background Due to their chemical de®nition and reduced size, the use of peptides as gene delivery systems is gaining interest as compared to the more common polymeric non-viral vectors. To achieve gene transfer ef®ciencies that would make peptides a realistic alternative to existing methods, we have evaluated and attempted to concert those properties with a direct impact on the activity of the system. These considerations have led to the design, synthesis and characterization of a 23-residue cationic peptide which we term RAWA.

Preparation and in Vitro Evaluation of Novel Lipopeptide Transfection Agents for Efficient Gene Delivery

Bioconjugate Chemistry, 2008

Gene therapy by delivery of nonviral expression vectors is highly desirable, due to their safety, stability, and suitability for production as bulk pharmaceuticals. However, low transfection efficiency remains a limiting factor in application on nonviral gene delivery. Despite recent advances in the field, there are still major obstacles to overcome. In an attempt to construct more efficient nonviral gene delivery vectors, we have designed a series of novel lipopeptide transfection agents, consisting of an alkyl chain, one cysteine, 1 to 4 histidine and 1 to 3 lysine residues. The lipopeptides were designed to facilitate dimerization (by way of the cysteine residues), DNA binding at neutral pH (making use of charged lysine residues), and endosomal escape (by way of weakly basic histidine residues). DNA/lipopeptide complexes were evaluated for their biophysical properties and transfection efficiencies. The number and identity of amino acids incorporated in the lipopeptide construct affected their DNA/lipopeptide complex forming capacity. As the number of lysine residues in the lipopeptide increased, the DNA complexes formed became more stable, had higher zeta potential (particle surface charge), and produced smaller mean particle sizes (typically 110 nm at a charge ratio of 5.0 and 240 nm at a charge ratio of 1.0). The effect of inclusion of histidines in the lipopeptide moiety had the opposite effect on complex formation to lysine, but was necessary for high transfection efficiency. In vitro transfection studies in COS-7 cells revealed that the efficiency of gene delivery of the luciferase encoding plasmid, pCMV-Luc, mediated by all the lipopeptides, was much higher than poly(Llysine) (PLL), which has no endosomal escape system, and in two cases was slightly higher than that of branched polyethylenimine (PEI). Lipopeptides with at least two lysine residues and at least one histidine residue produced spontaneous transfection complexes with plasmid DNA, indicating that endosomal escape was achieved by incorporation of histidine residues. These low molecular weight peptides can be readily synthesized and purified and offer new insights into the mechanism of action of transfection complexes.

Transfection using synthetic peptides: comparison of three DNA-compacting peptides and effect of centrifugation

Biochimica et Biophysica Acta (BBA) - General Subjects, 2000

Positively charged peptides have been shown to allow efficient transfection in vitro, especially when mixed with lipids. We have compared the ability of three positively charged peptides both to compact DNA and to increase the transfection efficiency of the cationic lipid DOTAP. The peptides are: a polymer of 17 lysines (pK17), YKAWK8WK (peptide K8) and SPKRSPKRSPKR (peptide P2). Peptides pK17 and K8 compact DNA efficiently in a gel retardation assay and protect DNA efficiently against DNase I degradation. Peptide P2, on the other hand, interacts weakly with DNA and provides poor protection. In order to compare their transfection efficiency, the three peptides were mixed with DNA (plasmid pEGFP-N1) at different charge ratios (+/3) and DOTAP (at a charge ratio of 2). The transfection efficiency was measured by FACS analysis at different times post-transfection. With NIH-3T3 cells, peptide P2 provides the highest transfection efficiency (about 40%), when compared with peptides pK17 (29%) and K8 (31%) and DOTAP alone (21%) under optimal conditions. Finally, we showed that centrifugation of the complexes onto the cells increased the transfection efficiency by a factor 1.5 to 2 with the various cell lines tested (ECV, primary human keratinocyte, CFT-2, NT-1).

Cell Penetrating Peptides, Novel Vectors for Gene Therapy

Pharmaceutics

Cell penetrating peptides (CPPs), also known as protein transduction domains (PTDs), first identified ~25 years ago, are small, 6–30 amino acid long, synthetic, or naturally occurring peptides, able to carry variety of cargoes across the cellular membranes in an intact, functional form. Since their initial description and characterization, the field of cell penetrating peptides as vectors has exploded. The cargoes they can deliver range from other small peptides, full-length proteins, nucleic acids including RNA and DNA, liposomes, nanoparticles, and viral particles as well as radioisotopes and other fluorescent probes for imaging purposes. In this review, we will focus briefly on their history, classification system, and mechanism of transduction followed by a summary of the existing literature on use of CPPs as gene delivery vectors either in the form of modified viruses, plasmid DNA, small interfering RNA, oligonucleotides, full-length genes, DNA origami or peptide nucleic acids.