Selectivity as well as sensitivity loss characterizes the cortical spatial frequency deficit in amblyopia (original) (raw)

r Human Brain Mapping 30:4054–4069 (2009) r Selectivity as well as Sensitivity Loss Characterizes the Cortical Spatial Frequency Deficit in Amblyopia

2014

r r Abstract: The processing deficit in amblyopia is not restricted to just high spatial frequencies but also involves low-medium spatial frequency processing, for suprathreshold stimuli with a broad orienta-tional bandwidth. This is the case in all three forms of amblyopia; strabismic, anisometropic, and de-privation. Here we use both a random block design and a phase-encoded design to ascertain (1) the extent to which fMRI activation is reduced at low-mid spatial frequencies in different visual areas, (2) how accurately spatial frequency is mapped across the amblyopic cortex. We report a loss of function to suprathreshold low-medium spatial frequency stimuli that involves more than just area V1, suggest-ing a diffuse loss in spatial frequency processing in a number of different cortical areas. An analysis of the fidelity of the spatial frequency cortical map reveals that many voxels lose their spatial frequency preference when driven by the amblyopic eye, suggesting a broader tuni...

Spatial interactions reveal inhibitory cortical networks in human amblyopia

Vision Research, 2005

Humans with amblyopia have a well-documented loss of sensitivity for first-order, or luminance defined, visual information. Recent studies show that they also display a specific loss of sensitivity for second-order, or contrast defined, visual information; a type of image structure encoded by neurons found predominantly in visual area A18/V2. In the present study, we investigate whether amblyopia disrupts the normal architecture of spatial interactions in V2 by determining the contrast detection threshold of a second-order target in the presence of second-order flanking stimuli. Adjacent flanks facilitated second-order detectability in normal observers. However, in marked contrast, they suppressed detection in each eye of the majority of amblyopic observers. Furthermore, strabismic observers with no loss of visual acuity show a similar pattern of detection suppression. We speculate that amblyopia results in predominantly inhibitory cortical interactions between second-order neurons.

The contrast dependence of the cortical fMRI deficit in amblyopia; a selective loss at higher contrasts

Human brain …, 2010

Although there is general agreement that the fMRI cortical response is reduced in humans with amblyopia, the deficit is subtle and has little correlation with threshold-based psychophysics. From a purely contrast sensitivity perspective, one would expect fMRI responses to be selectively reduced for stimuli of low contrasts. However, to date, all fMRI stimuli used in studies of amblyopia have been of high contrast. Furthermore, if the deficit is selective for low contrasts, one would expect it to reflect a selective M-cell loss, because M-cells have much higher contrast gain than P-cells and make a larger contribution to the threshold detection of stimuli of low spatial and medium temporal frequencies. To test these two predictions, we compared % BOLD response between the eyes of normals and amblyopes for low- and high-contrast stimuli using a phase-encoded design. The results suggest that the fMRI deficit in amblyopia depends upon stimulus contrast and that it is greater at high contrasts. This is consistent with a selective P-cell contrast deficit at a precortical or early cortical site.

The orientation discrimination deficit in strabismic amblyopia depends upon stimulus bandwidth

Vision Research, 1999

We show that the previously reported orientation deficit in amblyopia (Skottun, B. C., Bradley, A., & Freeman, R. D. (1986). Orientation discrimination in amblyopia. In6estigati6e Ophthalmology and Visual Science, 30, 532-537) also occurs for arrays of randomly positioned Gabor micropatterns for which explanations based on either neural disarray or local neural interactions would not hold. Furthermore, when using Gabors, we show that the deficit varies with the spatial frequency and orientational bandwidth of the stimuli used to measure it. We discuss two competing explanations for this, one based on a broader underlying detector bandwidth in amblyopia (both orientation and spatial frequency) and the other based on a selective deficit of first-order, as opposed to second-order orientation processing in strabismic amblyopia. Our results favour the latter interpretation.

Degraded attentional modulation of cortical neural populations in strabismic amblyopia

Journal of vision, 2016

Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI-informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual...

Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes

Clinical Nutrition, 2006

We investigated neuronal correlates of amblyopic deWcits resulting from early onset strabismus or anisometropia by monitoring individual responses in retinotopically mapped cortical visual areas with functional magnetic resonance imaging (fMRI) in eight psychophysically assessed adult amblyopes. In lower visual areas (V1/V2), grating stimuli presented to the normal and the amblyopic eye evoked strong cortical responses, while responses to the amblyopic eye were progressively reduced in higher areas on the central visual pathway (V3a/VP; V4/V8; lateral occipital complex, LOC). Selective reduction for high spatial frequency gratings was especially obvious in LOC. This suggests that transmission of activity from the amblyopic eye is increasingly impaired while it is relayed towards higher processing levels. Elevated responses in parts of areas V1 and V2 to monocular stimulation of the amblyopic eye might be related to the spatial and temporal distortions experienced by some amblyopic subjects. 

Spatial interactions in amblyopia: Effects of stimulus parameters and amblyopia type

2005

Adults with amblyopia were recently shown to perform abnormally in tasks requiring integration of local features into global percepts. Moreover, spatial interactions in amblyopic patients, though often found to be abnormal, showed marked variability. Here we measured collinear lateral interactions using Gabor patches in a large number of amblyopic (N= 75) and normal subjects (N= 25), testing four spatial frequencies (1.5, 3, 6, 9 cpd).

Interocular transfer of orientation-specific fMRI adaptation reveals amblyopia-related deficits in humans

Vision Research, 2009

We devised an experimental strategy for assessing the cortical cross-talk between ocular subsystems. For this purpose we measured the interocular transfer of adaptation (IOTA) at different levels in the human brain, using orientation-selective fMRI adaptation. We tested 10 normally sighted and 10 stereoblind or stereodeficient amblyopic observers by adapting monocularly to phase-reversing, oblique sinusoidal gratings. Following monocular adaptation, cortical activations evoked by the same (monoptic) or the other eye (interocular) were measured for the same and for the orthogonal orientation in a two by two factorial design. In both experimental groups, we obtained significant orientation-selective monocular adaptation in area V1 and in extrastriate regions on the dorsal and ventral visual pathways. In the normally-sighted subjects we found in addition interocular adaptation in V1 and extrastriate visual areas. This interocular adaptation indicates that fMRI adaptation transfers from the adapted ocular subsystem to the nonadapted ocular subsystem, and thus provides a measure of binocular interaction in normally-sighted subjects. In the amblyopic subjects, no interocular adaptation was seen at any of the investigated cortical levels, regardless of which eye was adapted. We suggest that the abnormal pattern of interocular transfer of fMRI adaptation is related to the disturbed integration of binocular signals in amblyopia.

Long Timescale fMRI Neuronal Adaptation Effects in Human Amblyopic Cortex

2011

An investigation of long timescale (5 minutes) fMRI neuronal adaptation effects, based on retinotopic mapping and spatial frequency stimuli, is presented in this paper. A hierarchical linear model was developed to quantify the adaptation effects in the visual cortex. The analysis of data involved studying the retinotopic mapping and spatial frequency adaptation effects in the amblyopic cortex. Our results suggest that, firstly, there are many cortical regions, including V1, where neuronal adaptation effects are reduced in the cortex in response to amblyopic eye stimulation. Secondly, our results show the regional contribution is different, and it seems to start from V1 and spread to the extracortex regions. Thirdly, our results show that there is greater adaptation to broadband retinotopic mapping as opposed to narrowband spatial frequency stimulation of the amblyopic eye, and we find significant correlation between fMRI response and the magnitude of the adaptation effect, suggesting that the reduced adaptation may be a consequence of the reduced response to different stimuli reported for amblyopic eyes.

Spatial-frequency dependent binocular imbalance in amblyopia

Scientific Reports, 2015

While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy.