Binarity and multiperiodicity in high-amplitude δ Scuti stars (original) (raw)
Related papers
Astronomy & Astrophysics, 2007
Context. In the H-R diagram, the intersection of the main sequence and the classical Cepheid instability strip corresponds to a domain where a rich variety of atmospheric phenomena are at play (including pulsation, radiative diffusion, convection). Main-sequence A-type stars are among the best candidates to study the complex interplay between these various phenomena. Aims. We have explored a sample of suspected A-type binaries in a systematic way, both spectroscopically and photometrically. The sample consists of main-sequence A-type stars for which the few existing radial velocity measurements may show variability, but for which other essential information is lacking. Due to their location in the H-R diagram, indications of pulsation and/or chemical peculiarities among these suspected binary (or multiple) systems may be found. Methods. High-resolution spectroscopy obtained with the ELODIE and MUSICOS spectrographs was used in combination with a few nights of differential CCD photometry in order to search for pulsation(s). In order to search as well for chemical peculiarities or for possible hidden component(s), we derived the atmospheric stellar parameters by fitting the observed spectra with LTE synthetic ones. Results. Of the 32 investigated targets, eight are spectroscopic binaries, one of which is a close binary also showing eclipses, and three have been identified as δ Scuti pulsators with rapid line-profile variations. Conclusions. Among the latter stars, HD 217860 reveals interesting multiperiodic photometric and spectroscopic variations, with up to eight frequencies common to two large photometric data sets. We suggest that at least one radial overtone mode is excited among the two most dominant frequencies, on the basis of the computation of the pulsation constants as well as of the predicted frequencies and the expected behaviour of the amplitude ratio and the phase difference in two passbands using adequate theoretical modelling. We furthermore found evidence for a strong modulation of the amplitude(s) and/or the (radial) frequency content of this intriguing δ Scuti star.
Astronomy & Astrophysics, 2007
We have explored a sample of suspected A-type binaries in a systematic way, both spectroscopically and photometrically. Due to their location in the H-R diagram, indications of pulsation and/or chemical peculiarities among these suspected binary (or multiple) systems may be found. High-resolution spectroscopy obtained with the ELODIE and MUSICOS spectrographs was used in combination with a few nights of differential CCD photometry in order to search for pulsation(s). Of the 32 investigated targets, eight are spectroscopic binaries, one of which is a close binary also showing eclipses, and three have been identified as Delta Scuti pulsators with rapid line-profile variations. Among the latter stars, HD 217860 reveals interesting multiperiodic photometric and spectroscopic variations, with up to eight frequencies common to two large photometric data sets. We suggest that at least one radial overtone mode is excited among the two most dominant frequencies. We furthermore found evidence for a strong modulation of the amplitude(s) and/or the (radial) frequency content of this intriguing Delta Scuti star.
Period and Amplitude Variability of the High-Amplitude Δ Scuti Star GP Andromedae
The Astronomical Journal, 2011
Extensive differential time-series CCD photometry has been carried out between 2003 and 2009 for the high-amplitude δ Scuti (HADS) star GP And. We acquired 12,583 new measurements consisting of 41 nights (153.3 hr) spanning over 2221 days. This is the largest time-series data set to date for the star. Based upon these data and others available in the literature, a comprehensive analysis has been conducted to investigate the pulsational properties of the star. Except for the known fundamental period and its harmonics we failed to detect any additional pulsation periods either radial or nonradial. We show clear amplitude variability, but we failed to verify the previously claimed periodic amplitude modulation. Classic O−C analysis indicates that the fundamental pulsation period of GP And is slowly increasing at a rate ofṖ /P = (5.49 ± 0.1) × 10 −8 yr −1 in accordance with the predictions of stellar evolutionary models. Findings of nonradial oscillations in previously known radial high-amplitude pulsators are being increasingly reported. We have briefly reviewed the current status of multiperiodicity and nonradial pulsation features among the high-amplitude pulsators in the classic instability strip.
The Pulsational Behavior of the High Amplitude d Scuti Star
2012
RS Gruis is a high-amplitude d Scuti-type variable star with a mean amplitude of almost half a magnitude in V and a period of almost 3.5 hours. The most recent study of this star by Derekas et al. (2009) suggests the presence of a low-mass dwarf star companion close to the variable star with a period of 11.5 days. Rodriguez et al. (1995) have also shown a decreasing rate of the period of dP/Pdt = -10.6 × 10 -8 / y. Using an extended dataset comprising BVIc CCD observations acquired at the Astronomical Observatory of the Instituto Copernico, data from ASAS and HIPPARCOS, and the existing CCD observations in the AAVSO International Database, we have performed an extensive periodgram and times of maximum analysis looking for long term variations. As a preliminary result, we confirmed that the period varies, but, since 1995, instead of decreasing, it has increased. We also found a small peak in the power spectrum in good agreement with the period suggested for the binary companion.
A high amplitude δ Scuti star with peculiar pulsational properties
In some δ Scuti stars, only one or two radial modes are excited (usually the fundamental mode and/or first overtone mode) and the observed peak-to-peak amplitudes exceed 0.3 mag (V). These stars are known as High Amplitude Delta Scuti (HADS) variables. We here present a detailed photometric and spectroscopic analysis of the HADS star TYC 3637-1152-1. We have derived a metallicity close to solar, a spectral type of F4 V and an age of = t log 9.1. Employing archival time series data from different sources, two frequencies f 0 = 10.034 c/d and f 1 = 12.681 c/d and their harmonics and linear combinations were identified. The period ratio of = f f / 0.791 0 1 puts this star into a peculiar position in the Petersen diagram, from which we conclude that TYC 3637-1152-1 is a unique object with peculiar pulsational properties that indicate a transitional state between HADS stars pulsating in the fundamental and first overtone modes and stars pulsating in higher overtones.
Catalogue and properties of δ Scuti stars in binaries
Monthly Notices of the Royal Astronomical Society, 2016
The catalogue contains 199 confirmed cases of binary systems containing at least one pulsating component of δ Sct type. The sample is divided into subgroups in order to describe the properties and characteristics of the δ Sct-type stars in binaries according to their Roche geometry. Demographics describing quantitatively our knowledge for these systems as well as the distributions of their pulsating components in the mass-radius, colour-magnitude, and evolutionary status-temperature diagrams are presented and discussed. It is shown that a threshold of ∼13 d of the orbital period regarding the influence of binarity on the pulsations is established. Finally, the correlations between the pulsation periods and the orbital periods, evolutionary status, and companion's gravity influence are updated based on the largest sample to date.
TYC 3637-1152-1 - a High Amplitude δ Scuti star with peculiar pulsational properties
New Astronomy, 2019
In some δ Scuti stars, only one or two radial modes are excited (usually the fundamental mode and/or first overtone mode) and the observed peak-to-peak amplitudes exceed 0.3 mag (V). These stars are known as High Amplitude Delta Scuti (HADS) variables. We here present a detailed photometric and spectroscopic analysis of the HADS star TYC 3637-1152-1. We have derived a metallicity close to solar, a spectral type of F4 V and an age of log t = 9.1. Employing archival time series data from different sources, two frequencies f 0 = 10.034 c/d and f 1 = 12.681 c/d and their harmonics and linear combinations were identified. The period ratio of f 0 /f 1 = 0.791 puts this star into a peculiar position in the Petersen diagram, from which we conclude that TYC 3637-1152-1 is a unique object with peculiar pulsational properties that indicate a transitional state between HADS stars pulsating in the fundamental and first overtone modes and stars pulsating in higher overtones.
2021
The first multi-color CCD photometric study of 27 δ Scuti stars is presented, which was performed over the three observing years. We obtained the maximum times and magnitude changes in the observation period for each star. The ephemeris of our δ Scuti stars was calculated based on the Markov chain Monte Carlo (MCMC) method, using the observed times of maxima and the period of star oscillations. We used Gaia EDR3 parallax for calculating the absolute magnitude of δ Scuti stars. The precise fundamental physical parameters of all studied stars, such as mass, radius, luminosity, and temperature, were estimated. The pulsation modes of stars were investigated according to their Periodogram, indicating they are all in radial pulsation modes. Since the period changing of pulsating variable stars indicates the stellar evolution, the Period-Luminosity (P-L) relation was calculated and discussed. Moreover, we present new P-L relations for fundamental and overtone modes; Machine Learning Classi...
2021
The multi-color CCD photometric study of 27 δ Scuti stars is presented. By using approximately three years of photometric observations, we obtained the times of maxima and magnitude changes during the observation time interval for each star. The ephemerides of our δ Scuti stars were calculated based on the Markov Chain Monte Carlo (MCMC) method using the observed times of maxima and the period of the stars’ oscillations. We used the Gaia EDR3 parallaxes to calculate the luminosities and also the absolute magnitudes of these δ Scuti stars. The fundamental physical parameters of all the stars in our sample such as masses and radii were estimated. We determined the pulsation modes of the stars based on the pulsation constants. Moreover, the period–luminosity (P–L) relation of δ Scuti stars was investigated and discussed. Then, by using a machine learning classification, new P–L relations for fundamental and overtone modes are presented.