Exponential Convergence to Non-Equilibrium Stationary States in Classical Statistical Mechanics (original) (raw)
Related papers
Communications in Mathematical Physics, 2000
We consider a model of heat conduction introduced in [6], which consists of a finite nonlinear chain coupled to two heat reservoirs at different temperatures. We study the low temperature asymptotic behavior of the invariant measure. We show that, in this limit, the invariant measure is characterized by a variational principle. We relate the heat flow to the variational principle. The main technical ingredient is an extension of Freidlin-Wentzell theory to a class of degenerate diffusions.
Communications in Mathematical Physics, 1999
We study the statistical mechanics of a finite-dimensional non-linear Hamiltonian system (a chain of anharmonic oscillators) coupled to two heat baths (described by wave equations). Assuming that the initial conditions of the heat baths are distributed according to the Gibbs measures at two different temperatures we study the dynamics of the oscillators. Under suitable assumptions on the potential and on the coupling between the chain and the heat baths, we prove the existence of an invariant measure for any temperature difference, i.e., we prove the existence of steady states. Furthermore, if the temperature difference is sufficiently small, we prove that the invariant measure is unique and mixing. In particular, we develop new techniques for proving the existence of invariant measures for random processes on a non-compact phase space. These techniques are based on an extension of the commutator method of Hörmander used in the study of hypoelliptic differential operators.
Nonequilibrium statistical mechanics of open classical systems
XIVth International Congress on Mathematical Physics, 2006
We describe the ergodic and thermodynamical properties of chains of anharmonic oscillators coupled, at the boundaries, to heat reservoirs at positive and different temperatures. We discuss existence and uniqueness of stationary states, rate of convergence to stationarity, heat flows and entropy production, Kubo formula and Gallavotti-Cohen fluctuation theorem.
Nonequilibrium dynamics of a stochastic model of anomalous heat transport
Journal of Physics A Mathematical and Theoretical
We study the dynamics of covariances in a chain of harmonic oscillators with conservative noise in contact with two stochastic Langevin heat baths. The noise amounts to random collisions between nearest-neighbour oscillators that exchange their momenta. In a recent paper, [S Lepri et al. J. Phys. A: Math. Theor. 42 (2009) 025001], we have studied the stationary state of this system with fixed boundary conditions, finding analytical exact expressions for the temperature profile and the heat current in the thermodynamic (continuum) limit. In this paper we extend the analysis to the evolution of the covariance matrix and to generic boundary conditions. Our main purpose is to construct a hydrodynamic description of the relaxation to the stationary state, starting from the exact equations governing the evolution of the correlation matrix. We identify and adiabatically eliminate the fast variables, arriving at a continuity equation for the temperature profile T(y,t), complemented by an or...
Nonequilibrium dynamics of a stochastic model of anomalous heat transport: numerical analysis
Journal of Physics A Mathematical and Theoretical
We study heat transport in a chain of harmonic oscillators with random elastic collisions between nearest-neighbours. The equations of motion of the covariance matrix are numerically solved for free and fixed boundary conditions. In the thermodynamic limit, the shape of the temperature profile and the value of the stationary heat flux depend on the choice of boundary conditions. For free boundary conditions, they also depend on the coupling strength with the heat baths. Moreover, we find a strong violation of local equilibrium at the chain edges that determine two boundary layers of size sqrtN\sqrt{N}sqrtN (where NNN is the chain length), that are characterized by a different scaling behaviour from the bulk. Finally, we investigate the relaxation towards the stationary state, finding two long time scales: the first corresponds to the relaxation of the hydrodynamic modes; the second is a manifestation of the finiteness of the system. Comment: Submitted to Journal of Physics A, Mathematical a...
The stationary state and the heat equation for a variant of Davies' model of heat conduction
Journal of Statistical Physics, 1985
We study a variant of Davies' model of heat conduction, consisting of a chain of (classical or quantum) harmonic oscillators, whose ends are coupled to thermal reservoirs at different temperatures, and where neighboring oscillators interact via intermediate reservoirs. In the weak coupling limit, we show that a unique stationary state exists, and that a discretized heat equation holds. We give an explicit expression of the stationary state in the case of two classical oscillators. The heat equation is obtained in the hydrodynamic limit, and it is proved that it completely describes the macroscopic behavior of the model.
Normal heat conductivity in chains with noisy, time-dependent, quadratic Hamiltonians
arXiv preprint cond-mat/0505346, 2005
We present a model for conductivity and energy diffusion in a linear chain described by a quadratic Hamiltonian with Gaussian noise. We show that when the correlation matrix is diagonal, the noiseaveraged Liouville-von Neumann equation governing the time-evolution of the system reduces to the Lindblad equation with Hermitian Lindblad operators. We show that the noise-averaged density matrix for the system expectation values of the energy density and the number density satisfy discrete versions of the heat and diffusion ...
Heat Conduction in Chains of Nonlinear Oscillators
Physical Review Letters, 1997
We numerically study heat conduction in chains of nonlinear oscillators with time-reversible thermostats. A nontrivial temperature profile is found to set in, which obeys a simple scaling relation for increasing the number N of particles. The thermal conductivity diverges approximately as N 1͞2 , indicating that chaotic behavior is not enough to ensure the Fourier law. Finally, we show that the microscopic dynamics ensures fulfillment of a macroscopic balance equation for the entropy production. [S0031-9007(97)02611-2]
2009
Consider a Markov chain {Xn}n≥0 with an ergodic probability measure π. Let Ψ be a function on the state space of the chain, with α-tails with respect to π, α ∈ (0,2). We find sufficient conditions on the probability transition to prove convergence in law of N ∑N n Ψ(Xn) to an α-stable law. A “martingale approximation” approach and a “coupling” approach give two different sets of conditions. We extend these results to continuous time Markov jump processes Xt, whose skeleton chain satisfies our assumptions. If waiting times between jumps have finite expectation, we prove convergence of N ∫ Nt
Entropy, information theory, and the approach to equilibrium of coupled harmonic oscillator systems
Journal of Statistical Physics, 1969
Finite segments of infinite chains of classical coupled harmonic oscillators are treated as models of thermodynamic systems in contact with a heat bath, i.e., canonical ensembles. The Liouville function p for the infinite chain is reduced by integrating over the "outside" variables to a function pN of the variables of the N-particle segment that is the thermodynamic system. The reduced Liouville function pn, which is calculated from the dynamics of the infinite chain and the statistical knowledge of the coordinates and momenta at t = 0, is a time-dependent probability density in the 2N-dimensional phase space of the system. A Gibbs entropy defined in terms of pN measures the evolution of knowledge of the system (more accurately, the growth of missing pertinent information) in the sense of information theory. As p t [ -+ 0% energy is equipartitioned, the entropy evolves to the value expected from equilibrium statistical mechanics, and p~evolves to an equilibrium distribution function. The simple chain exhibits diffusion in coordinate space, i.e., Brownian motion, and the diffusivity is shown to depend only on the initial distribution of momenta (not of coordinates) in the heat bath. The harmonically bound chain, in the limit of weak coupling, serves as an excellent model for the approach to equilibrium of a canonical ensemble of weakly interacting particles.