Cophylogeny and disparate rates of evolution in sympatric lineages of chewing lice on pocket gophers (original) (raw)
Related papers
Disparate rates of molecular evolution in cospeciating hosts and parasites
1994
DNA sequences for the gene encoding mitochondrial cytochrome oxidase in a group of rodents (pocket gophers) and their ectoparasites (chewing lice) provide evidence for cospeciation and reveal different rates of molecular evolution in the hosts and their parasites. The overall rate of nucleotide substitution (both silent and replacement changes) is approximately three times higher in lice, and the rate of synonymous substitution (based on analysis of fourfold degenerate sites) is approximately an order of magnitude greater in lice. The difference in synonymous substitution rate between lice and gophers correlates with a difference of similar magnitude in generation times.
Sympatric Speciation in the Post “Modern Synthesis” Era of Evolutionary Biology
Evolutionary Biology, 2012
Sympatric speciation is among the most controversial and challenging concepts in evolution. There are a multitude of definitions of speciation alone, and when combined with the biogeographic concept of sympatric range overlap, consensus on what sympatric speciation is, whether it happens, and its importance, is even more difficult to achieve. Providing the basis upon which to define and judge sympatric speciation, the Modern Evolutionary Synthesis (Huxley in Evolution: the modern synthesis. MIT Press, Cambridge, 1942) led to the conclusion that sympatric speciation is an inconsequential process in the generation of species diversity. In the post Modern Synthesis era of evolutionary biology, the PCR revolution and associated accumulation of DNA sequence data from natural populations has led to a resurgence of interest in sympatric speciation, and more importantly, the role of natural selection in lineage diversification. Much effort is currently being devoted to elucidating the processes by which the constituents of an initially panmictic population can become reproductively isolated and evolve some level of reproductive incompatibility without the complete cessation of gene flow due to geographic barriers. The evolution of reproductive isolation solely due to natural selection is perhaps the most controversial manner by which sympatric speciation occurs, and it is that which we focus upon in this review. Mathematical model simulations indicate that even strict definitions of sympatric speciation are possible to satisfy, empirical data consistent with sympatric divergence are accumulating, but irrefutable evidence of sympatric speciation in natural populations remains elusive. Genomic investigations are advancing our ability to identify genetic patterns caused by natural selection, thereby advancing our understanding of the power of natural selection relative to gene flow. Overall, sympatric lineage divergence, especially at the sub-species level, may have led to a substantial portion of biodiversity.
Journal of Parasitology, 2012
Many species of pocket gophers and their ectoparasitic chewing lice have broadly congruent phylogenies, indicating a history of frequent codivergence. For a variety of reasons, phylogenies of codiverging hosts and parasites are expected to be less congruent for more recently diverged taxa. This study is the first of its scale in the pocket gopher and chewing louse system, with its focus entirely on comparisons among populations within a single species of host and 3 chewing louse species in the Geomydoecus bulleri species complex. We examined mitochondrial DNA from a total of 46 specimens of Geomydoecus lice collected from 11 populations of the pocket gopher host, Pappogeomys bulleri. We also examined nuclear DNA from a subset of these chewing lice. Louse phylogenies were compared with a published pocket gopher phylogeny. Contrary to expectations, we observed a statistically significant degree of parallel cladogenesis in these closely related hosts and their parasites. We also observed a higher rate of evolution in chewing louse lineages than in their corresponding pocket gopher hosts. In addition, we found that 1 louse species (Geomydoecus burti) may not be a valid species, that subspecies within G. bulleri are not reciprocally monophyletic, and that morphological and genetic evidence support recognition of a new species of louse, Geomydoecus pricei.
Evolution of genes and taxa: a primer
Plant Molecular Evolution, 2000
The rapidly growing fields of molecular evolution and systematics have much to offer to molecular biology, but like any field have their own repertoire of terms and concepts. Homology, for example, is a central theme in evolutionary biology whose definition is complex and often controversial. Homology extends to multigene families, where the distinction between orthology and paralogy is key. Nucleotide sequence alignment is also a homology issue, and is a key stage in any evolutionary analysis of sequence data. Models based on our understanding of the processes of nucleotide substitution are used both in the estimation of the number of evolutionary changes between aligned sequences and in phylogeny reconstruction from sequence data. The three common methods of phylogeny reconstruction -parsimony, distance and maximum likelihood -differ in their use of these models. All three face similar problems in finding optimal -and reliable -solutions among the vast number of possible trees. Moreover, even optimal trees for a given gene may not reflect the relationships of the organisms from which the gene was sampled. Knowledge of how genes evolve and at what rate is critical for understanding gene function across species or within gene families. The Neutral Theory of Molecular Evolution serves as the null model of molecular evolution and plays a central role in data analysis. Three areas in which the Neutral Theory plays a vital role are: interpreting ratios of nonsynonymous to synonymous nucleotide substitutions, assessing the reliability of molecular clocks, and providing a foundation for molecular population genetics.
Sympatric speciation in the post "modern synthesis" era of evolution
Evolutionary Biology, 2012
Sympatric speciation is among the most controversial and challenging concepts in evolution. There are a multitude of definitions of speciation alone, and when combined with the biogeographic concept of sympatric range overlap, consensus on what sympatric speciation is, whether it happens, and its importance, is even more difficult to achieve. Providing the basis upon which to define and judge sympatric speciation, the Modern Evolutionary Synthesis (Huxley in Evolution: the modern synthesis. MIT Press, Cambridge, 1942) led to the conclusion that sympatric speciation is an inconsequential process in the generation of species diversity. In the post Modern Synthesis era of evolutionary biology, the PCR revolution and associated accumulation of DNA sequence data from natural populations has led to a resurgence of interest in sympatric speciation, and more importantly, the role of natural selection in lineage diversification. Much effort is currently being devoted to elucidating the processes by which the constituents of an initially panmictic population can become reproductively isolated and evolve some level of reproductive incompatibility without the complete cessation of gene flow due to geographic barriers. The evolution of reproductive isolation solely due to natural selection is perhaps the most controversial manner by which sympatric speciation occurs, and it is that which we focus upon in this review. Mathematical model simulations indicate that even strict definitions of sympatric speciation are possible to satisfy, empirical data consistent with sympatric divergence are accumulating, but irrefutable evidence of sympatric speciation in natural populations remains elusive. Genomic investigations are advancing our ability to identify genetic patterns caused by natural selection, thereby advancing our understanding of the power of natural selection relative to gene flow. Overall, sympatric lineage divergence, especially at the sub-species level, may have led to a substantial portion of biodiversity.
A Different Tempo of Mitochondrial DNA Evolution in Birds and Their Parasitic Lice
Molecular Phylogenetics and Evolution, 1998
A phylogeny for the lice (Insecta: Phthiraptera: genus Dennyus) parasitic on swiftlets (Aves: Collocalliinae) was constructed based on mitochondrial cytochrome b DNA sequences. This phylogeny is congruent with previous phenetic analyses of morphometric data for the lice. Comparison with a previously obtained phylogeny for the hosts indicates some degree of cospeciation. These cospeciation events are used to compare relative rates of evolution in the birds and their lice for the same segment of the cytochrome b gene. Cytochrome b is evolving two to three times more rapidly in lice than in birds, and louse cytochrome b is highly divergent compared to that of most other insects. Although generation time has been suggested as an explanation for the disparity in evolutionary rates between lice and their hosts, we suggest that the small effective population sizes of lice coupled with founder events occurring during transmission to new host individuals may be an important factor.
The relationship between phylogenetic reconstruction and evolutionary theory is reassessed. It is argued here that phylogenies, and evolutionary principles, should be analysed initially as independently from each other as possible. Only then can they be used to test one another. If the phylogenies and evolutionary principles are totally consistent with one another, this consilience of independent lines of evidence increases confidence in both. If, however, there is a conflict, then one should assess the relative support for each hypothesis, and tentatively accept the more strongly supported one. We review examples where the phylogenetic hypothesis is preferred over the evolutionary principle, and vice versa, and instances where the conflict cannot be readily resolved. Because the analyses of pattern and process must initially be kept separate, the temporal order in which they are performed is unimportant. Therefore, the widespread methodology of always proceeding from cladogram to evolutionary ' scenario ' cannot be justified philosophically. Such an approach means that cladograms cannot be properly tested against evolutionary principles, and that evolutionary ' scenarios ' have no independent standing. Instead, we propose the ' consilience ' approach where phylogenetic and evolutionary hypotheses are formulated independently from each other and then examined for agreement.
Molecular Phylogenetics and Evolution
2002
www.academicpress.com Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels Birgitta Bremer, a,e,*