Single-Step Antigen Loading and Activation of Dendritic Cells by mRNA Electroporation for the Purpose of Therapeutic Vaccination in Melanoma Patients (original) (raw)
Related papers
Journal of Immunotherapy, 2011
The immunostimulatory capacity of dendritic cells is improved by co-electroporation with mRNA encoding CD40 ligand, constitutively active toll-like receptor 4, and CD70 (TriMix-DC). This pilot clinical trial evaluated the feasibility, safety, and immunogenicity of a therapeutic vaccination containing autologous TriMix-DC co-electroporated with mRNA encoding a human leukocyte antigen class II-targeting signal linked to 1 of 4 melanoma-associated antigens (MAGE-A3, MAGE-C2, tyrosinase, and gp100) in patients with advanced melanoma. Thirty-five American Joint Committee on Cancer stage III/IV melanoma patients received autologous TriMix-DC (4 administrations 2 weeks apart). Immune monitoring was performed by evaluating skin biopsies of delayed type IV hypersensitivity (DTH) reactions for presence of vaccinal antigen-specific DTH-infiltrating lymphocytes (DIL). Thereafter, patients could receive interferon-alpha-2b (IFN-a-2b) 5 MU subcutaneously 3 times weekly and additional TriMix-DC every 8 weeks. TriMix-DC-related adverse events comprised grade 2 local injection site reactions (all patients), and grade 2 fever and lethargy (2 patients). Vaccinal antigen-specific DIL were found in 0/6 patients tested at vaccine initiation and in 12/21 (57.1%) assessed after the fourth vaccine. A positive postvaccination DTH test correlated with IL-12p70 secretion capacity of TriMix-DC. No objective responses to TriMix-DC alone were seen according to RECIST. Twenty-nine patients received IFN-a-2b after the fourth vaccine without unexpected adverse events. During TriMix-DC/IFN-a-2b combination therapy, 1 partial response and 5 stable disease (disease control of >6 months with regression of metastases) were observed in 17 patients with evaluable disease at baseline. In conclusion, this study demonstrated that therapeutic vaccination with autologous TriMix-DC is feasible, safe, and immunogenic and can be combined with sequential IFN-a-2b.
Dendritic cells (DCs) are considered to be promising adjuvants for inducing immunity to cancer. We used mature, monocyte-derived DCs to elicit resistance to malignant melanoma. The DCs were pulsed with Mage-3A1 tumor peptide and a recall antigen, tetanus toxoid or tuberculin. 11 far advanced stage IV melanoma patients, who were progressive despite standard chemotherapy, received five DC vaccinations at 14-d intervals. The first three vaccinations were administered into the skin, 3 ϫ 10 6 DCs each subcutaneously and intradermally, followed by two intravenous injections of 6 ϫ 10 6 and 12 ϫ 10 6 DCs, respectively. Only minor (less than or equal to grade II) side effects were observed. Immunity to the recall antigen was boosted. Significant expansions of Mage-3A1-specific CD8 ϩ cytotoxic T lymphocyte (CTL) precursors were induced in 8/11 patients. Curiously, these immune responses often declined after the intravenous vaccinations. Regressions of individual metastases (skin, lymph node, lung, and liver) were evident in 6/11 patients. Resolution of skin metastases in two of the patients was accompanied by erythema and CD8 ϩ T cell infiltration, whereas nonregressing lesions lacked CD8 ϩ T cells as well as Mage-3 mRNA expression. This study proves the principle that DC "vaccines" can frequently expand tumor-specific CTLs and elicit regressions even in advanced cancer and, in addition, provides evidence for an active CD8 ϩ CTL-tumor cell interaction in situ as well as escape by lack of tumor antigen expression.
Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients
Oncoimmunology, 2015
Autologous dendritic cell (DC) therapy is an experimental cellular immunotherapy that is safe and immunogenic in patients with advanced melanoma. In an attempt to further improve the therapeutic responses, we treated 15 patients with melanoma, with autologous monocyte-derived immature DC electroporated with mRNA encoding CD40 ligand (CD40L), CD70 and a constitutively active TLR4 (caTLR4) together with mRNA encoding a tumor-associated antigen (TAA; respectively gp100 or tyrosinase). In addition, DC were pulsed with keyhole limpet hemocyanin (KLH) that served as a control antigen. Production of this DC vaccine with high cellular viability, high expression of co-stimulatory molecules and MHC class I and II and production of IL-12p70, was feasible in all patients. A vaccination cycle consisting of three vaccinations with up to 15×10(6) DC per vaccination at a biweekly interval, was repeated after 6 and 12 months in the absence of disease progression. mRNA-optimized DC were injected intr...
Cancer Gene Therapy, 2005
Most cancer vaccines to date have made use of common tumor antigens or allogenic cancer cell lines. The majority of tumor antigens may, however, be unique patient-specific antigens. Dendritic cells (DCs) are the most potent antigen-presenting cells known. The present report is a full-scale preclinical evaluation of autologous DCs transfected with autologous tumor-mRNA (tDCs) for vaccination in malignant melanoma. By using autologous tumor-mRNA, we intend to make the DCs present a broad spectrum of tumor-associated antigens relevant to each individual patient. Previously, we have described effective methods for mRNAtransfection into DCs by square-wave electroporation and for generating large numbers of DCs. Here, we demonstrate the ability of tDCs, made under full-scale vaccine conditions, to generate in vitro T-cell responses specific for antigens encoded by the transfected tumor-mRNA. T-cell proliferation assays demonstrated tDC-specific responses for all six patients tested. Responses were further studied by IFNg ELISPOT and Bioplex cytokine assays (two patients) and by experiments on isolated CD4 þ and CD8 þ T cells, including HLA-blockage (one patient). Moreover, we describe the results of extensive tumor-RNA analysis using Agilent Bioanalyser, a method that we have implemented in the clinical protocol. Based on this preclinical evaluation, a vaccine trial has been started.
Annals of Oncology, 2013
Background: Autologous monocyte-derived dendritic cells (DCs) electroporated with synthetic messenger RNA (mRNA) encoding a CD40 ligand, a constitutively active Toll-like receptor 4 and CD70, together with mRNA encoding fusion proteins of a human leukocyte antigen (HLA)-class II targeting signal (DC-LAMP) and a melanoma-associated antigen (MAA); either MAGE-A3, MAGE-C2, tyrosinase or gp100) (TriMixDC-MEL) are superiorly immunogenic. Patients and methods: In this phase IB clinical trial, 24 million viable DCs were administered by four biweekly combined intradermal (id) and intravenous (iv) administrations, and a fifth administration on week 16. The number of ivadministered DCs was escalated in four sequentially treated cohorts. Immune responses were assessed by analysis of antigen specificity of blood-derived T-cells and skin infiltrating lymphocytes (SKILs). Results: Fifteen patients with pretreated advanced melanoma tolerated administration of TriMixDC-MEL well. Two patients achieved a complete response and two patients a partial response. All objective responders are progression-free after a follow-up of, respectively, 24+, 28+, 33+, and 34+ months. Post-therapy antigen-specific SKILs were documented in 6 of 12 patients, and antigen-specific CD8 + T-cells were detected in the blood of 4 of 5 patients. Conclusions: Cellular immunotherapy with TriMixDC-MEL is safe and immunogenic. Antitumor activity with durable disease control is observed across the investigated iv-dose levels. ClinicalTrials.gov Identifier: NCT01066390.
Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula
Cancer Immunology Immunotherapy, 2014
are actively pursuing the use of DCs as an efficient way of inducing anticancer immune responses. Nowadays, DCs can be generated at a large scale in closed systems, yielding sufficient numbers of cells for clinical application. In addition, with the identification of tumor-associated antigens, which are either selectively or preferentially expressed by tumors, a whole range of strategies using DCs for immunotherapy have been designed and tested in clinical studies. Despite the evidence that DCs loaded with tumor-associated antigens can elicit immune responses in vivo, clinical responses remained disappointingly low. Therefore, optimization of the cellular product and route of administration was urgently needed. here, we review the path we have followed in the development of TriMixDC-MeL, a potent DC-based cellular therapy, discussing its development as well as further modifications and applications.
International Journal of Cancer, 2001
However, different types of DC have yet to be compared for their capacity to induce antitumor responses in vivo at different developmental stages. Herein, we correlated the efficiencies of different types of monocyte-derived DC as vaccines on the resulting anti-tumor immune responses in vivo. Immature and mature DCs were separately pulsed with a peptide derived from tyrosinase, MelanA/MART-1 or MAGE-1 and a recall antigen. Both DC populations were injected every 2 weeks in different lymph nodes of the same patient. Immune responses were monitored before, during and after vaccination. Mature DCs induced increased recall antigen-specific CD4 ؉ T-cell responses in 7/8 patients, while immature DCs did so in only 3/8. Expansion of peptide-specific IFN-␥-producing CD8 ؉ T cells was observed in 5/7 patients vaccinated with mature DCs but in only 1/7 using immature DCs. However, these functional data did not correlate with the tetramer staining. Herein, immature DCs also showed expansion of peptidespecific T cells. In 2/4 patients vaccinated with mature DCs, we observed induction of peptide-specific cytotoxic T cells, as monitored by chromium-release assays, whereas immature DCs failed to induce peptide-specific cytotoxic T cells in the same patients. Instead, FCS-cultured immature DCs induced FCS-specific IgE responses in 1 patient. Our data demonstrate that this novel vaccination protocol is an efficient approach to compare different immunization strategies within the same patient. Thus, our data define FCS-free cultured mature DCs as superior inducers of T-cell responses in melanoma patients.