Electrospun poly(d/l-lactide-co-l-lactide) hybrid matrix: a novel scaffold material for soft tissue engineering (original) (raw)
Related papers
WIREs Nanomedicine and Nanobiotechnology, 2020
This review provides insights into the current advancements in the field of electrospinning, focusing on its applications for skin tissue engineering. Furthermore, it reports the evolvement and present challenges of advanced skin substitute product development and explores the recent contributions in 2D and 3D scaffolding, focusing on natural, synthetic, and composite nanomaterials. In the past decades, nanotechnology has arisen as a fascinating discipline that has influenced every aspect of science, engineering, and medicine. Electrospinning is a versatile fabrication method that allows researchers to elicit and explore many of the current challenges faced by tissue engineering and regenerative medicine. In skin tissue engineering, electrospun nanofibers are particularly attractive due to their refined morphology, processing flexibility-that allows for the formation of unique materials and structures, and its extracellular matrix-like biomimetic architecture. These allow for electrospun nanofibers to promote improved re-epithelization and neotissue formation of wounds. Advancements in the use of portable electrospinning equipment and the employment of electrospinning for transdermal drug delivery and melanoma treatment are additionally explored. Present trends and issues are critically discussed based on recently published patents, clinical trials, and in vivo studies.
Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers
Polymer International, 2007
While electrospinning had seen intermittent use in the textile industry from the early twentieth century, it took the explosion of the field of tissue engineering, and its pursuit of biomimetic extracellular matrix (ECM) structures, to create an electrospinning renaissance. Over the past decade, a growing number of researchers in the tissue engineering community have embraced electrospinning as a polymer processing technique that effectively and routinely produces non-woven structures of nanoscale fibers (sizes of 80 nm to 1.5 µm). These nanofibers are of physiological significance as they closely resemble the structure and size scale of the native ECM (fiber diameters of 50 to 500 nm). Attempts to replicate the many roles of native ECM have led to the electrospinning of a wide array of polymers, both synthetic (poly(glycolic acid), poly(lactic acid), polydioxanone, polycaprolactone, etc.) and natural (collagen, fibrinogen, elastin, etc.) in origin, for a multitude of different tissue applications. With various compositions, fiber dimensions and fiber orientations, the biological, chemical and mechanical properties of the electrospun materials can be tailored. In this review we highlight the role of electrospinning in the engineering of different tissues and applications (skin/wound healing, cartilage, bone, vascular tissue, urological tissues, nerve, and ligament), and discuss its potential role in future work. Copyright © 2007 Society of Chemical Industry
Electrospun nanofibrous structure: A novel scaffold for tissue engineering
Journal of Biomedical Materials Research, 2002
The architecture of an engineered tissue substitute plays an important role in modulating tissue growth. A novel poly(D,L-lactide-co-glycolide) (PLGA) structure with a unique architecture produced by an electrospinning process has been developed for tissue-engineering applications. Electrospinning is a process whereby ultra-fine fibers are formed in a high-voltage electrostatic field. The electrospun structure, composed of PLGA fibers ranging from 500 to 800 nm in diameter, features a morphologic similarity to the extracellular matrix (ECM) of natural tissue, which is characterized by a wide range of pore diameter distribution, high porosity, and effective mechanical properties. Such a structure meets the essential design criteria of an ideal en-gineered scaffold. The favorable cell-matrix interaction within the cellular construct supports the active biocompatibility of the structure. The electrospun nanofibrous structure is capable of supporting cell attachment and proliferation. Cells seeded on this structure tend to maintain phenotypic shape and guided growth according to nanofiber orientation. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique architecture, which acts to support and guide cell growth.
Tissue Engineering and Regenerative Medicine, 2016
Most cells in the human body grow and live in a complex network of biomaterials usually known as the extracellular matrix, which is composed of various proteins and proteoglycans assembled into a highly ordered structure [1-3]. In regenerative medicine, when new tissue needs to be grown intra or extra corporally, there are fundamental aspects to be considered for the construction, development and functionality of living tissue: bioactive molecules together with a scaffold, used as a support for the cells, are needed to mimic the extracellular matrix and promote cell adhesion, proliferation, differentiation, and migration pathways [4,5]. Producing scaffolds for tissue engineering demands the development of new materials with bioactive molecules and an appropriated technique. Among the techniques to produce polymeric scaffolds, electrospinning is a simple and effective method to obtain nanofiber-based scaffolds resembling the functions of the extracellular matrix [6-10]. Regarding the materials, a number of natural and synthetic polymers have been used to produce electrospun scaffolds [11-15]. Poly (lactic acid) (PLA) is widely used for the generation of scaffolds for tissue engineering to allow precise control over their physicochemical and mechanical properties but exhibit limited cellular affinity. Natural biodegradable polymers, such as collagen, provide inherent binding sites for the promotion of cell adhesion and cellular growth. However, this natural material, obtained from animal or human tissues, is expensive and
Electrospun blends of natural and synthetic polymers as scaffolds for tissue engineering
2006
Abstract Engineering functional three-dimensional (3-D) tissue constructs for the replacement and/or repair of damaged native tissues using cells and scaffolds is one of the ultimate goals of tissue engineering. In this study, non-woven fibrous scaffolds were electrospun from the synthetic biodegradable polymer poly (lactic-co-glycolic acid)(PLGA) and natural proteins, gelatin (denatured collagen) and elastin.
Materials Today Communications, 2019
Electrospun poly(ƹ-caprolactone) (PCL) scaffolds incorporated with bioactive materials play a key role in tissue engineering applications due to their extra cellular matrix (ECM) mimicking property, biocompatibility and biodegradability. Electrospinning is one of the most successful techniques for the fabrication of nonwoven, three-dimensional, porous, and nano or submicron scale fiber-based matrices with tunable morphology. Investigations on the use of electrospun PCL and its blends/composites for skin reconstruction has gained much momentum recently. Feasibility
Electrospun nanostructured scaffolds for tissue engineering applications
Nanomedicine (London, England), 2007
Despite being known for decades (since 1934), electrospinning has emerged recently as a very widespread technology to produce synthetic nanofibrous structures. These structures have morphologies and fiber diameters in a range comparable with those found in the extracellular matrix of human tissues. Therefore, nanofibrous scaffolds are intended to provide improved environments for cell attachment, migration, proliferation and differentiation when compared with traditional scaffolds. In addition, the process versatility and the highly specific surface area of nanofiber meshes may facilitate their use as local drug-release systems. Common electrospun nanofiber meshes are characterized by a random orientation. However, in some special cases, aligned distributions of the fibers can be obtained, with an interconnected microporous structure. The characteristic pore sizes and the inherent planar structure of the meshes can be detrimental for the desired cell infiltration into the inner regi...
2010
Natural polymers such as collagens, elastin, and fibrinogen make up much of the body's native extracellular matrix (ECM). This ECM provides structure and mechanical integrity to tissues, as well as communicating with the cellular components it supports to help facilitate and regulate daily cellular processes and wound healing. An ideal tissue engineering scaffold would not only replicate the structure of this ECM, but would also replicate the many functions that the ECM performs. In the past decade, the process of electrospinning has proven effective in creating non-woven ECM analogue scaffolds of micro to nanoscale diameter fibers from an array of synthetic and natural polymers. The ability of this fabrication technique to utilize the aforementioned natural polymers to create tissue engineering scaffolds has yielded promising results, both in vitro and in vivo, due in part to the enhanced bioactivity afforded by materials normally found within the human body. This review will present the process of electrospinning and describe the use of natural polymers in the creation of bioactive ECM analogues in tissue engineering.
… Research Part A, 2006
Engineering functional three-dimensional (3-D) tissue constructs for the replacement and/or repair of damaged native tissues using cells and scaffolds is one of the ultimate goals of tissue engineering. In this study, non-woven fibrous scaffolds were electrospun from the synthetic biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) and natural proteins, gelatin (denatured collagen) and elastin. In the absence of cross-linking agent, the average PGE fiber diameter increased from 347 ± 103 nm to 999 ± 123 nm upon wetting as measured by scanning electron microscopy. Rat bone marrow stromal cells (rBMSC) were used paradigmatically to study the 3-D cell culture properties of PGE scaffolds. Consistent with the observed properties of the individual fibers, PGE scaffolds initially swelled in aqueous culture medium, however rBMSC seeded PGE scaffolds contracted to < 50% of original size. Time course histological analysis demonstrated uniform seeding of rBMSC into PGE scaffolds and complete cell penetration into the fibrous architecture over 4 weeks of in vitro culture.
An update on clinical applications of electrospun nanofibers for skin bioengineering
Artificial Cells, Nanomedicine, and Biotechnology, 2015
Mimicking morphological similarities of the natural extra cellular matrix (ECM), described by ultrafine continuous fibers, high surface to volume ratio, and high porosity is valuable for effective regeneration of injured skin tissue. Electrospun nanofibers, being one of the most favorable and fast developing products of technology today, display a tremendous potential in wound healing and skin tissue engineering. Under the remarkable attention being given to electrospun nanofibrous scaffolds in promoting wound healing and skin regeneration, this review focuses on the potential of the electrospinning technique as a promising tool for constructing polymeric nanofibrous scaffolds with the favorable physicochemical properties needed for skin bioengineering. In addition, current applications of electrospun nanofibrous matrices for skin bioengineering are detailed in this review.