Green synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract: study of antioxidant and anticancer activities (original) (raw)

Green synthesis of silver and gold nanoparticles using Crataegus oxyacantha extract and their urease inhibitory activities

Biotechnology and Applied Biochemistry, 2020

The present study reports the biological synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract and their in vitro free radical scavenging efficacy as well as antiproliferative effect in Hep2 cells. The formation of silver (GYAgNPs) and gold nanoparticles (GYAuNPs) was confirmed by UV-visible spectroscopy. The average size of synthesized GYAgNPs and GYAuNPs was found to be 33 and 26 nm, respectively, by DLS particle size analyzer. TEM analysis indicated spherical shape of GYAgNPs and GYAuNPs and in EDX analysis they produced strong signal for silver and gold, respectively. Both GYAgNPs and GYAuNPs exhibited strong in vitro free radical quenching ability and their activity was comparable to that of GYLE. The cytotoxic effect of GYAgNPs and GYAuNPs in Hep2 cells was examined by MTT assay in which GYAgNPs displayed an IC 50 value of 121 lg ml-1 , while GYAuNPs produced up to 38 % of inhibition at the maximum concentration of 250 lg ml-1 used in this study. Distinct morphological changes were observed in Hep2 cells following treatment with GYAgNPs and GYAuNPs at 24 h, and orange-colored apoptotic bodies were located by acridine orange and ethidium bromide double-staining technique. Also, there was increase in the levels of reactive oxygen species in treated cells as indicated by 2 0 ,7 0-dichlorofluorescin diacetate staining. Further, nuclear changes like chromatin condensation/fragmentation were also observed by propidium iodide and 4 0 ,6diamidino-2-phenylindole dilactate staining methods. These findings support that the antiproliferative effects of GYAgNPs and GYAuNPs in Hep2 cells are mediated through induction of apoptosis.

Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens

Bioprocess and Biosystems Engineering, 2014

The present study reports the biological synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract and their in vitro free radical scavenging efficacy as well as antiproliferative effect in Hep2 cells. The formation of silver (GYAgNPs) and gold nanoparticles (GYAuNPs) was confirmed by UV-visible spectroscopy. The average size of synthesized GYAgNPs and GYAuNPs was found to be 33 and 26 nm, respectively, by DLS particle size analyzer. TEM analysis indicated spherical shape of GYAgNPs and GYAuNPs and in EDX analysis they produced strong signal for silver and gold, respectively. Both GYAgNPs and GYAuNPs exhibited strong in vitro free radical quenching ability and their activity was comparable to that of GYLE. The cytotoxic effect of GYAgNPs and GYAuNPs in Hep2 cells was examined by MTT assay in which GYAgNPs displayed an IC 50 value of 121 lg ml-1 , while GYAuNPs produced up to 38 % of inhibition at the maximum concentration of 250 lg ml-1 used in this study. Distinct morphological changes were observed in Hep2 cells following treatment with GYAgNPs and GYAuNPs at 24 h, and orange-colored apoptotic bodies were located by acridine orange and ethidium bromide double-staining technique. Also, there was increase in the levels of reactive oxygen species in treated cells as indicated by 2 0 ,7 0-dichlorofluorescin diacetate staining. Further, nuclear changes like chromatin condensation/fragmentation were also observed by propidium iodide and 4 0 ,6diamidino-2-phenylindole dilactate staining methods. These findings support that the antiproliferative effects of GYAgNPs and GYAuNPs in Hep2 cells are mediated through induction of apoptosis.

Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro

International Journal of Nanomedicine

Introduction: Extensive use of metallic nanomaterials in different areas of agriculture and commercial products induce significant harmful effects on human health and the environment. In the current study, we synthesized an eco-friendly approach silver nanoparticles (AgNPs) using root extracts of Beta vulgaris L. Methods: The synthesized green silver nanoparticles (gAgNPs) were characterized by dynamic light scattering (DLS) and high-resolution transmission electron microscope (HR-TEM). The gAgNPs had a round shape and the mean size was 20−50 nm. The cytotoxic effects of gAgNPs were determined in human hepatic normal (CHANG) and cancer (HUH-7) cells by using tetrazolium salt (MTT) and lactate dehydrogenase (LDH) assays for 24 h. Results and Discussion: It was clear from the observations of this experiment that higher concentrations of gAgNPs reduce cell viability. The production of reactive oxygen species (ROS) was evaluated by using DCFDA. The gAgNPs induced more ROS in the HuH-7 cells than in the CHANG cells. The fragmentation of DNA was evaluated by alkaline single-cell gel electrophoresis and the maximum DNA strand breakage was found at a higher concentration exposure of gAgNPs for 24 h. It is important to notice that the HuH-7 cells showed an increased sensitivity to gAgNPs than the CHANG cells. The apoptotic and necrotic effects of gAgNPs on both the cells were evaluated using annexin-V-FITC and propidium iodide staining. An increased count of apoptotic and necrotic cells was found following a higher concentration exposure of gAgNPs. The apoptotic protein expression in these cells due to gAgNPs exposure was determined using immunoblotting techniques and the level of Bcl2 was decreased. However, the expression of BAX and protein was increased in both cells. Conclusion: Therefore, it can be concluded that higher concentrations of gAgNPs may induce significant cytotoxicity and cause DNA damage and apoptosis.

Enhanced Cytotoxicity of Biomolecules Loaded Metallic Silver Nanoparticles Against Human Liver (HepG2) and Prostate (PC3) Cancer Cell Lines

Green nanoparticle synthesis was achieved using environmentally acceptable plant extracts reducing and capping agents. The present study was based on assessments to the anticancer activities to determine the effect of synthesized silver nanoparticles (AgNPs) from three medicinal plants on human liver (HepG2) and prostate (PC3) cancer cell lines. The synthesis of AgNPs using Plumbago zeylanica (Pz), Semecarpus anacardium (Sa) and Terminalia arjuna (Ta) plant extracts in the reaction mixture was monitored by UV-visible spectroscopy. FTIR results clearly illustrated that the plant extracts containing prominent peaks of functional groups and biomolecules viz., tannins, phenols, flavonoids and triterpenoids those act as capping agents and involved in the stabilization of the synthesised silver nanoparticles. Synthesized AgNPs were spherical and cuboid in shape which is determined by SEM. Average size of the AgNPs were between 80–98, 60–95 and 34–70 nm for PzAgNPs, SaAgNPs and TaAgNPs, respectively. Further, the synthesized AgNPs were characterized by XRD, EDX, DLS and Zeta potential analysis. Moreover, the synthesized AgNPs exhibited a dose-dependent cytotoxicity against human liver and prostate cancer cell lines. The inhibitory concentration (IC 50) values of HepG2, PC3 and Vero cells were found to be 70.97, 58.61, 96.41; 10.04, 42.77, 83.86; and 28.42, 41.78, 69.48 g/ml for PzAgNPs, SaAgNPs and TaAgNPs at 48 h incubation. An induction of apoptosis was confirmed by DNA fragmentation, Hoechst, Rhodamine and AO/EtBr staining. The present results strongly suggested that the AgNPs synthesized using P. zeylanica, S. anacardium and T. arjuna extracts showed potential anticancer activity of HepG2 and PC3 cell lines.

<p>Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro</p&gt

International Journal of Nanomedicine, 2020

Introduction: Extensive use of metallic nanomaterials in different areas of agriculture and commercial products induce significant harmful effects on human health and the environment. In the current study, we synthesized an eco-friendly approach silver nanoparticles (AgNPs) using root extracts of Beta vulgaris L. Methods: The synthesized green silver nanoparticles (gAgNPs) were characterized by dynamic light scattering (DLS) and high-resolution transmission electron microscope (HR-TEM). The gAgNPs had a round shape and the mean size was 20−50 nm. The cytotoxic effects of gAgNPs were determined in human hepatic normal (CHANG) and cancer (HUH-7) cells by using tetrazolium salt (MTT) and lactate dehydrogenase (LDH) assays for 24 h. Results and Discussion: It was clear from the observations of this experiment that higher concentrations of gAgNPs reduce cell viability. The production of reactive oxygen species (ROS) was evaluated by using DCFDA. The gAgNPs induced more ROS in the HuH-7 cells than in the CHANG cells. The fragmentation of DNA was evaluated by alkaline single-cell gel electrophoresis and the maximum DNA strand breakage was found at a higher concentration exposure of gAgNPs for 24 h. It is important to notice that the HuH-7 cells showed an increased sensitivity to gAgNPs than the CHANG cells. The apoptotic and necrotic effects of gAgNPs on both the cells were evaluated using annexin-V-FITC and propidium iodide staining. An increased count of apoptotic and necrotic cells was found following a higher concentration exposure of gAgNPs. The apoptotic protein expression in these cells due to gAgNPs exposure was determined using immunoblotting techniques and the level of Bcl2 was decreased. However, the expression of BAX and protein was increased in both cells. Conclusion: Therefore, it can be concluded that higher concentrations of gAgNPs may induce significant cytotoxicity and cause DNA damage and apoptosis.

Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells

PLOS ONE

In this study, we report on the synthesis of silver nanoparticles (AgNPs) from the leaf extracts of Cynara scolymus (Artichoke) using microwave irradiation and the evaluation of its anti-cancer potential with photodynamic therapy (PDT). Silver nanoparticles formation was characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Silver nanoparticles formation was also investigated the surface charge, particle size and distribution using zetasizer analysis. The cytotoxic effect of AgNPs and/or PDT was studied by MTT assay and migration by the scratch assay. The apoptotic inducing ability of the AgNPs and/or PDT was investigated by intracellular ROS analysis, antioxidant enzyme levels (SOD, CAT, GPx and GSH), Hoechst staining and Bax/Bcl-2 analysis using western blotting. The mean particle size of produced AgNPs was found 98.47±2.04 nm with low polydispersity (0.301±0.033). Zeta potential values of AgNPs show-32.3± 0.8 mV. These results clearly indicate the successful formation of AgNPs for cellular uptake. Mitochondrial damage and intracellular ROS production were observed upon treatment with AgNPs (10μg/mL) and PDT (0.5 mJ/cm 2) showed significant reducing cell migration, expression of Bax and suppression of Bcl-2. Significantly, biosynthesized AgNPs showed a broad-spectrum anti-cancer activity with PDT therapy and therefore represent promoting ROS generation by modulating mitochondrial apoptosis induction in MCF7 breast cancer cells.

An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using< i> Podophyllum hexandrum on …

Colloids and Surfaces B: …, 2012

Now-a-days synthesis and characterization of silver nanoparticles (AgNPs) through biological entity is quite interesting to employ AgNPs for various biomedical applications in general and treatment of cancer in particular. This paper presents the green synthesis of AgNPs using leaf extract of Podophyllum hexandrum Royle and optimized with various parameters such as pH, temperature, reaction time, volume of extract and metal ion concentration for synthesis of AgNPs. TEM, XRD and FTIR were adopted for characterization. The synthesized nanoparticles were found to be spherical shaped with average size of 14 nm. Effects of AgNPs were analyzed against human cervical carcinoma cells by MTT Assay, quantification of ROS, RT-PCR and western blotting techniques. The overall result indicates that AgNPs can selectively inhibit the cellular mechanism of HeLa by DNA damage and caspase mediated cell death. This biological procedure for synthesis of AgNPs and selective inhibition of cancerous cells gives an alternative avenue to treat human cancer effectively.

CYTOTOXIC, APOPTOTIC EFFICACY OF SILVER NANOPARTICLES SYNTHESIZED FROM INDIGOFERA ASPALATHOIDS Original Article

International journal of Pharmacy and Pharmaceutical Sciences, 2014

Objective: To study the cytotoxic & apoptotic efficacy of synthesized silver nanoparticles from I. aspalathoids against Hep3B cell line. Methods: Hep3B cell line was purchased from American type culture collection (NCCS, Pune). The cells were treated with synthesized silver nanoparticles from I. aspalathoids for 24 & 48 hrs. Cell Viability was evaluated by MTT assay and DNA fragmentation assay. Results: The IC50 (half maximal inhibitory concentration) value of the AgNPs on Hep3B cells was calculated to be194.65ng/ml. The treated cells were compared to the control group with respect to morphology. The mechanism of cell death was studied through ethidium bromide/acridine orange. The live untreated cells had well organized chromatin structures, whereas the treated cells had fragmented or condensed chromatin consisting of apoptotic nuclei. Therefore, the nuclear staining experiment shows that apoptosis started in 48h after addition of AgNPs to the culture medium. Conclusion: The study demonstrated the possible of the use of biologically synthesized silver nanoparticles from I. aspalathoids as an effective drug against cancer.

Reactive Oxygen Species-Mediated Cytotoxicity in Liver Carcinoma Cells Induced by Silver Nanoparticles Biosynthesized Using Schinus molle Extract

Nanomaterials, 2022

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is ranked as the third most common cause of cancer-related mortality worldwide. Schinus molle (S. mole) L. is an important medicinal plant that contains many bioactive compounds with pharmacological properties. The role of S. molle leaf extract in the biosynthesis of silver nanoparticles (AgNPs) was determined. The biosynthesized AgNPs were thoroughly characterized by UV–vis spectrophotometry, transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. Furthermore, the cytotoxic effect of the biosynthesized AgNPs using S. molle (SMAgNPs) against HepG2 liver cancer cells was investigated. Reactive oxygen species generation, apoptosis induction, DNA damage, and autophagy activity were analyzed. The results clearly showed that the biosynthesized silver nanoparticles inhibited the proliferation of HepG2 by significantly (p < 0.05) inducing oxidative stres...