Self-assembled arrays of peptide nanotubes by vapour deposition (original) (raw)

Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications

Journal of Peptide Science, 2011

Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties.

Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications

Soft Matter, 2011

Peptide nanotubes are promising bio-inspired self-assemblies with a wide range of envisioned applications. The present review addresses the recent advances in their fundamental comprehension and mechanistic aspects of their latest downstream uses. Through well-documented examples, including the Lanreotide peptide monodisperse nanotubes, the molecular organisations and interactions underlying such well-defined hierarchical nanoarchitectures are in particular examined. The kinetic and thermodynamic aspects of the corresponding self-assembly processes are also considered, especially the intriguing mechanism of nanotube wall closure. The recently unravelled Lanreotide self-assembly mechanisms have revealed, for instance, the limiting role of electrostatic repulsion in this critical step. Within the numerous applications currently explored, particular attention is given to promising inorganic deposition processes using peptide nanotubes as scaffolds. In exceptional cases, inorganic nanotubes with tunable diameters could be synthesised via peptide-based

Stability of diphenylalanine peptide nanotubes in solution

Nanoscale, 2011

Over the last couple of years, self-organizing nanotubes based on the dipeptide diphenylalanine have received much attention, mainly as possible building blocks for the next generation of biosensors and as drug delivery systems. One of the main reasons for this large interest is that these peptide nanotubes are believed to be very stable both thermally and chemically. Previously, the chemical and thermal stability of self-organizing structures has been investigated after the evaporation of the solvent. However, it was recently discovered that the stability of the structures differed significantly when the tubes were in solution. It has been shown that, in solution, the peptide nanotubes can easily be dissolved in several solvents including water. It is therefore of critical importance that the stability of the nanotubes in solution and not after solvent evaporation be investigated prior to applications in which the nanotube will be submerged in liquid. The present article reports results demonstrating the instability and suggests a possible approach to a stabilization procedure, which drastically improves the stability of the formed structures. The results presented herein provide new information regarding the stability of selforganizing diphenylalanine nanotubes in solution.

Thermal and Chemical Stability of Diphenylalanine Peptide Nanotubes: Implications for Nanotechnological Applications

Langmuir, 2006

The diphenylalanine peptide, the core recognition motif of the -amyloid polypeptide, efficiently self-assembles into discrete, well-ordered nanotubes. Here, we describe the notable thermal and chemical stability of these tubular structures both in aqueous solution and under dry conditions. Scanning and transmission electron microscopy (SEM and TEM) as well as atomic force microscopy (AFM) revealed the stability of the nanotubes in aqueous solution at temperatures above the boiling point of water upon autoclave treatment. The nanotubes preserved their secondary structure at temperatures up to 90°C, as shown by circular dichroism (CD) spectra. Cold field emission gun (CFEG) high-resolution scanning electron microscope (HRSEM) and thermogravimetric analysis (TGA) of the peptide nanotubes after dry heat revealed durability at higher temperature. It was shown that the thermal stability of diphenylalanine peptide nanotubes is significantly higher than that of a nonassembling dipeptide, dialanine. In addition to thermal stability, the peptide nanotubes were chemically stable in organic solvents such as ethanol, methanol, 2-propanol, acetone, and acetonitrile, as shown by SEM analysis. Moreover, the acetone environment enabled AFM imaging of the nanotubes in solution. The significant thermal and chemical stability of the peptide nanotubes demonstrated here points toward their possible use in conventional microelectronic and microelectromechanics processes and fabrication into functional nanotechnological devices.

Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis

Nanomaterials

The structures and properties of the diphenylalanine (FF) peptide nanotubes (PNTs), both L-chiral and D-chiral (L-FF and D-FF) and empty and filled with water/ice clusters, are presented and analyzed. DFT (VASP) and semi-empirical calculations (HyperChem) to study these structural and physical properties of PNTs (including ferroelectric) were used. The results obtained show that after optimization the dipole moment and polarization of both chiral type L-FF and D-FF PNT and embedded water/ice cluster are enhanced; the water/ice cluster acquire the helix-like structure similar as L-FF and D-FF PNT. Ferroelectric properties of tubular water/ice helix-like cluster, obtained after optimization inside L-FF and D-FF PNT, as well of the total L-FF and D-FF PNT with embedded water/ice cluster, are discussed.

Thiolated Peptide Nanotube Assembly as Arrays on Patterned Au Substrates

Nano Letters, 2004

A variety of nanotubes were addressed to particular directions by using external forces such as microfluidics, magnetic fields, electric fields, and the Langmuir−Blodgett technique. Recently in another approach, nanotubes were assembled by chemical interactions. For example, nanotubes coated by proteins were assembled onto the complimentary ligand-patterned substrates in solution. Molecular recognitions, hydrogen bonding, hydrophobic interactions, and charge interactions were also applied to locate nanotubes in the specific regions on substrates. In this report, we assembled thiolated peptide nanotubes by using one of the stronger chemical interactions, thiol−Au interaction. Due to the strong thiol−Au interaction, the nanotubes show a strong affinity toward Au substrates and the nanotubes were only addressed to Au regions on the substrates. Because of the strong affinity, the nanotube assembly could be scaled up to form nanotube arrays by patterning Au pads on the substrates with AFM-based nanolithography. This technique may lead to an alternative nontraditional fabrication method for electric circuits because the physical properties of aligned peptide nanotubes can be tuned after the targeted positioning with semiconductor/metal coatings on the nanotubes with simple chemical procedures.

Dipeptide derived from benzylcystine forms unbranched nanotubes in aqueous solution

2013

The essence of modern nanotechnology is manifested in the formation of well-ordered nanostructures by a process of self-association. Peptides are among the most useful building blocks for organic bionanostructures such as nanotubes, nanospheres, nanotapes, nanofibrils, and other different ordered structures at the nanoscale. Peptides are biocompatible, chemically diverse, and much more stable and can be readily synthesized on a large scale. Also, they have diverse application in biosensors, tissue engineering, drug delivery, etc. Here, we report a short cystine-based dipeptide, which spontaneously self-associates to form straight, unbranched nanotubes. Such self-assembled nanobiomaterials provide a novel possibility of designing new functional biomaterials with potential applications in nanobiotechnology. The formation of nanotubes in solution state has been demonstrated by atomic force microscopy and scanning electron microscopy. Infrared absorption and circular dichroism demonstrated the intermolecular beta-sheet-like backbone hydrogen bonding in juxtaposing and stacking of aromatic side chains.