Preparation of a genetically fused protein A/luciferase conjugate for use in bioluminescent immunoassays (original) (raw)
Related papers
Enhanced brightness of bacterial luciferase by bioluminescence resonance energy transfer
Scientific Reports, 2021
Using the lux operon (luxCDABE) of bacterial bioluminescence system as an autonomous luminous reporter has been demonstrated in bacteria, plant and mammalian cells. However, applications of bacterial bioluminescence-based imaging have been limited because of its low brightness. Here, we engineered the bacterial luciferase (heterodimer of luxA and luxB) by fusion with Venus, a bright variant of yellow fluorescent protein, to induce bioluminescence resonance energy transfer (BRET). By using decanal as an externally added substrate, color change and ten-times enhancement of brightness was achieved in Escherichia coli when circularly permuted Venus was fused to the C-terminus of luxB. Expression of the Venus-fused luciferase in human embryonic kidney cell lines (HEK293T) or in Nicotiana benthamiana leaves together with the substrate biosynthesis-related genes (luxC, luxD and luxE) enhanced the autonomous bioluminescence. We believe the improved luciferase will forge the way towards the ...
PLoS ONE, 2010
Background: The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multibicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo. Methodology/Principal Findings: Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH 2) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH 2 supplementation led to a 151fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background. Conclusions/Significance: The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.
Applied and environmental microbiology, 1996
We expressed the luc gene, encoding luciferase from Photinus pyralis, in Staphylococcus aureus Cowan I downstream of the plasmid-borne promoter for protein A. Constitutive luciferase synthesis did not impair the growth rate of the host nor did it affect the stability of the plasmid. Light production started immediately after addition of luciferin. The kinetic profile is of the glowing rather than the peak type. Because S. aureus Cowan I produces large quantities of protein A, of which a substantial part becomes covalently attached to rigid cell walls, the bacterial cells could be specifically immobilized on a substrate to which immunoglobulin G molecules were adsorbed either directly or as secondary antibodies. Light production from these cells can be used as a reporter tool for the detection of antigen-antibody complexes. Fourfold amplifications of the emitted signals were obtained by in situ incubation of the bound cells in bacterial growth medium.
A streptavidin–luciferase fusion protein: comparisons and applications
Biomolecular Engineering, 1999
Luciferases are unique enzymes in being capable of emitting visible light as one of the end-products of their catalysis. Both procaryotic and eucaryotic organisms exist that emit light, and the luciferases from these organisms differ considerably in size as well as chemistry of catalysis. Two main, i.e. most studied groups, are the bacterial luciferases of e.g. Vibrio fisheri, Vibrio har6eyi, and Photorhabdus luminescens, responding to FMNH2, long-chain aldehyde and molecular oxygen and the insect luciferases of the fireflies Photinus pyralis and Luciola minengrelica or click beetle Pyrophorus plagiophthalamus, responding to ATP, luciferin and molecular oxygen. An emerging amount of 'new' luciferases from shrimps, fish, jelly fish and overall from marine origin, are finding their way to biotechnological applications. The common feature of these is their ability to produce light within the visible region of the spectrum, i.e. between 450 nm (blue) and 630 nm (red). In this short review, we discuss some of the recent advances on fusion proteins of eucaryotic luciferases and their applications. Special emphasis is placed on a streptavidin -luciferase fusion protein produced by insect cells using the baculovirus expression system.
An optimized luciferase bioluminescent assay for coenzyme A
Analytical and Bioanalytical Chemistry, 2008
A new bioluminescent method for coenzyme A (CoA) quantification is described. It is based on the enzymatic conversion of dehydroluciferyl-adenylate (L-AMP) into dehydroluciferyl-coenzyme A (L-CoA) by firefly luciferase (E.C. 1.13.12.7) (LUC), which causes a flash of light that can be measured in a luminometer. The method was subjected to optimization using experimental design methodologies to obtain optimum values for the concentrations of L-AMP ([L-AMP]), luciferase ([LUC]), ATP ([ATP]) and luciferin ([LH 2 ]). This method has a linear response over the range of 0.25-4 μM of CoA, with a limit of detection (LOD) of 0.24 μM and a limit of quantification (LOQ) of 0.80 μM. The assay has a relative standard deviation of about 7%. By coupling this optimized procedure to bioluminescent detection, a sensible and robust method can be obtained for the analysis of CoA.
Imaging of light emission from the expression of luciferases in living cells and organisms: a review
Luminescence, 2002
Luciferases are enzymes that emit light in the presence of oxygen and a substrate (luciferin) and which have been used for real‐time, low‐light imaging of gene expression in cell cultures, individual cells, whole organisms, and transgenic organisms. Such luciferin–luciferase systems include, among others, the bacterial lux genes of terrestrial Photorhabdus luminescens and marine Vibrio harveyi bacteria, as well as eukaryotic luciferase luc and ruc genes from firefly species (Photinus) and the sea panzy (Renilla reniformis), respectively. In various vectors and in fusion constructs with other gene products such as green fluorescence protein (GFP; from the jellyfish Aequorea), luciferases have served as reporters in a number of promoter search and targeted gene expression experiments over the last two decades. Luciferase imaging has also been used to trace bacterial and viral infection in vivo and to visualize the proliferation of tumour cells in animal models. Copyright © 2002 John W...
Alternative luciferase for monitoring bacterial cells under adverse conditions
Applied and …, 2005
The availability of cloned luciferase genes from fireflies (luc) and from bacteria (luxAB) has led to the widespread use of bioluminescence as a reporter to measure cell viability and gene expression. The most commonly occurring bioluminescence system in nature is the deep-sea imidazolopyrazine bioluminescence system. Coelenterazine is an imidazolopyrazine derivative which, when oxidized by an appropriate luciferase enzyme, produces carbon dioxide, coelenteramide, and light. The luciferase from the marine copepod Gaussia princeps (Gluc) has recently been cloned. We expressed the Gluc gene in Mycobacterium smegmatis using a shuttle vector and compared its performance with that of an existing luxAB reporter. In contrast to luxAB, the Gluc luciferase retained its luminescence output in the stationary phase of growth and exhibited enhanced stability during exposure to low pH, hydrogen peroxide, and high temperature. The work presented here demonstrated the utility of the copepod luciferase bioluminescent reporter as an alternative to bacterial luciferase, particularly for monitoring responses to environmental stress stimuli.
Biotechnological applications of bioluminescence and chemiluminescence
Trends in Biotechnology, 2004
Recent progress in molecular biology has made available several biotechnological tools that take advantage of the high detectability and rapidity of bioluminescence and chemiluminescence spectroscopy. These developments provide inroads to in vitro and in vivo continuous monitoring of biological processes (e.g. gene expression, protein-protein interaction and disease progression), with clinical, diagnostic and drug discovery applications. Furthermore, combining luminescent enzymes or photoproteins with biospecific recognition elements at the genetic level has led to the development of ultrasensitive and selective bioanalytical tools, such as recombinant whole-cell biosensors, immunoassays and nucleic acid hybridization assays. The high detectability of the luminescence analytical signal makes it appropriate for miniaturized bioanalytical devices (e.g. microarrays, microfluidic devices and high-density-well microtiter plates) for the highthroughput screening of genes and proteins in small sample volumes.