Metabolic imaging of low-grade gliomas with three-dimensional magnetic resonance spectroscopy (original) (raw)

2002, International Journal of Radiation Oncology*Biology*Physics

Purpose: The role of radiotherapy (RT) seems established for patients with low-grade gliomas with poor prognostic factors. Three-dimensional (3D) magnetic resonance spectroscopy imaging (MRSI) has been reported to be of value in defining the extent of glioma infiltration. We performed a study examining the impact MRSI would have on the routine addition of 2-3-cm margins around MRI T2-weighted hyperintensity to generate the treatment planning clinical target volume (CTV) for low-grade gliomas. Methods and Materials: Twenty patients with supratentorial gliomas WHO Grade II (7 astrocytomas, 6 oligoastrocytomas, 7 oligodendrogliomas) underwent MRI and MRSI before surgery. The MRI was contoured manually; the regions of interest included T2 hyperintensity and, if present, regions of contrast enhancement on T1-weighted images. The 3D-MRSI peak parameters for choline and N-acetyl-aspartate, acquired voxel-by-voxel, were categorized using a choline/N-acetyl-aspartate index (CNI), a tool for quantitative assessment of tissue metabolite levels, with CNI 2 being the lowest value corresponding to tumor. CNI data were aligned to MRI and displayed as 3D contours. The relationship between the anatomic and metabolic information on tumor extent was assessed by comparing the CNI contours and other MRSI-derived metabolites to the MRI T2 volume. Results: The limitations in the size of the region "excited" meant that MRSI could be used to evaluate only a median 68% of the T2 volume (range 38 -100%), leaving the volume T2c. The CNI 2 volume (median 29 cm 3 , range 10 -73) was contained totally within the T2c in 55% of patients. In the remaining patients, the volume of CNI 2 extending beyond the T2c was quite small (median 2.3 cm 3 , range 1.4 -5.2), but was not distributed uniformly about the T2c, extending up to 22 mm beyond it. Two patients demonstrated small regions of contrast enhancement corresponding to the regions of highest CNI. Other metabolites, such as creatine and lactate, seem useful for determining less and more radioresistant areas, respectively. Conclusion: Metabolically active tumor, as detected by MRSI, is restricted mainly to the T2 hyperintensity in low-grade gliomas, but can extend outside it in a limited and nonuniform fashion up to 2 cm. Therefore, a CTV including T2 and areas of CNI extension beyond the T2 hyperintensity would result in a reduction in the size and a change in the shape of the standard clinical target volumes generated by adding uniform margins of 2-3 cm to the T2 hyperintensity.