Phylogenetic analysis of the envelope protein (domain lll) of dengue 4 viruses (original) (raw)

Molecular evolution and phylogeny of dengue-4 viruses

The Journal of general virology, 1997

Nucleotide sequences of the envelope protein genes of 19 geographically and temporally distinct dengue (DEN)-4 viruses were determined. Nucleic acid sequence comparison revealed that the identity among the DEN-4 viruses was greater than 92%. Similarity among deduced amino acids was between 96 and 100%; in most cases identical amino acid substitutions occurred among viruses from similar geographical regions. Alignment of nucleic acid sequences followed by parsimony analysis generated phylogenetic trees, which indicated that geographically independent evolution of DEN-4 viruses had occurred. DEN-4 viruses were separated into two genetically distinct subtypes (genotypes). Genotype-1 contains viruses from the Philippines, Thailand and Sri Lanka; genotype-2 consists of viruses from Indonesia, Tahiti, the Caribbean Islands (Puerto Rico, Dominica) and Central and South America.

Genetic diversity of the E protein of dengue type 3 virus

2009

Background: Dengue is the most important arbovirus disease in tropical and subtropical countries. The viral envelope (E) protein is responsible for cell receptor binding and is the main target of neutralizing antibodies. The aim of this study was to analyze the diversity of the E protein gene of DENV-3. E protein gene sequences of 20 new viruses isolated in Ribeirao Preto, Brazil, and 427 sequences retrieved from GenBank were aligned for diversity and phylogenetic analysis. Results: Comparison of the E protein gene sequences revealed the presence of 47 variable sites distributed in the protein; most of those amino acids changes are located on the viral surface. The phylogenetic analysis showed the distribution of DENV-3 in four genotypes. Genotypes I, II and III revealed internal groups that we have called lineages and sub-lineages. All amino acids that characterize a group (genotype, lineage, or sub-lineage) are located in the 47 variable sites of the E protein. Conclusion: Our results provide information about the most frequent amino acid changes and diversity of the E protein of DENV-3.

Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia

Virology …, 2010

Background: Dengue Fever is one of the most important viral re-emergent diseases affecting about 50 million people around the world especially in tropical and sub-tropical countries. In Colombia, the virus was first detected in the earliest 70′s when the disease became a major public health concern. Since then, all four serotypes of the virus have been reported. Although most of the huge outbreaks reported in this country have involved dengue virus serotype 1 (DENV-1), there are not studies about its origin, genetic diversity and distribution. Results: We used 224 bp corresponding to the carboxyl terminus of envelope (E) gene from 74 Colombian isolates in order to reconstruct phylogenetic relationships and to estimate time divergences. Analyzed DENV-1 Colombian isolates belonged to the formerly defined genotype V. Only one virus isolate was clasified in the genotype I, likely representing a sole introduction that did not spread. The oldest strains were closely related to those detected for the first time in America in 1977 from the Caribbean and were detected for two years until their disappearance about six years later. Around 1987, a split up generated 2 lineages that have been evolving separately, although not major aminoacid changes in the analyzed region were found. Conclusion: DENV-1 has been circulating since 1978 in Colombia. Yet, the phylogenetic relationships between strains isolated along the covered period of time suggests that viral strains detected in some years, although belonging to the same genotype V, have different recent origins corresponding to multiple re-introduction events of viral strains that were circulating in neighbor countries. Viral strains used in the present study did not form a monophyletic group, which is evidence of a polyphyletic origin. We report the rapid spread patterns and high evolution rate of the different DENV-1 lineages.

Phylogenetic relationship of dengue virus type 3 isolated in Brazil and Paraguay and global evolutionary divergence dynamics

Virology Journal, 2012

Background: Dengue is the most important mosquito-borne viral disease worldwide. Dengue virus comprises four antigenically related viruses named dengue virus type 1 to 4 (DENV1-4). DENV-3 was re-introduced into the Americas in 1994 causing outbreaks in Nicaragua and Panama. DENV-3 was introduced in Brazil in 2000 and then spread to most of the Brazilian States, reaching the neighboring country, Paraguay in 2002. In this study, we have analyzed the phylogenetic relationship of DENV-3 isolated in Brazil and Paraguay with viruses isolated worldwide. We have also analyzed the evolutionary divergence dynamics of DENV-3 viruses.

Molecular analysis of the dengue virus type 1 and 2 in Brazil based on sequences of the genomic envelope-nonstructural protein 1 junction region

Revista do Instituto de Medicina Tropical de São Paulo

The genomic sequences of the Envelope-Non-Structural protein 1 junction region (E/NS1) of 84 DEN-1 and 22 DEN-2 isolates from Brazil were determined. Most of these strains were isolated in the period from 1995 to 2001 in endemic and regions of recent dengue transmission in São Paulo State. Sequence data for DEN-1 and DEN-2 utilized in phylogenetic and split decomposition analyses also include sequences deposited in GenBank from different regions of Brazil and of the world. Phylogenetic analyses were done using both maximum likelihood and Bayesian approaches. Results for both DEN-1 and DEN-2 data are ambiguous, and support for most tree bipartitions are generally poor, suggesting that E/NS1 region does not contain enough information for recovering phylogenetic relationships among DEN-1 and DEN-2 sequences used in this study. The network graph generated in the split decomposition analysis of DEN-1 does not show evidence of grouping sequences according to country, region and clades. Wh...

Comparative analysis of full genomic sequences among different genotypes of dengue virus type 3

Virology Journal, 2008

Although the previous study demonstrated the envelope protein of dengue viruses is under purifying selection pressure, little is known about the genetic differences of full-length viral genomes of DENV-3. In our study, complete genomic sequencing of DENV-3 strains collected from different geographical locations and isolation years were determined and the sequence diversity as well as selection pressure sites in the DENV genome other than within the E gene were also analyzed.

Phylogenetic reconstruction of dengue virus type 2 in Colombia

Virology journal, 2012

Background: Dengue fever is perhaps the most important viral re-emergent disease especially in tropical and subtropical countries, affecting about 50 million people around the world yearly. In Colombia, dengue virus was first detected in 1971 and still remains as a major public health issue. Although four viral serotypes have been recurrently identified, dengue virus type 2 (DENV-2) has been involved in the most important outbreaks during the last 20 years, including 2010 when the fatality rate highly increased. As there are no major studies reviewing virus origin and genotype distribution in this country, the present study attempts to reconstruct the phylogenetic history of DENV-2 using a sequence analysis from a 224 bp PCR-amplified product corresponding to the carboxyl terminus of the envelope (E) gene from 48 Colombian isolates.

Genetic Variation In the 3 Non-Coding Region of Dengue Viruses

Virology, 2001

The 3Ј non-coding region (3ЈNCR) of strains of dengue 1 (DEN 1), DEN 2, DEN 3, and DEN 4 viruses, isolated in different geographical regions, was sequenced and compared to published sequences of the four dengue viruses. A total of 50 DEN 2 strains was compared: 7 West African strains, 3 Indonesian mosquito strains, 1 Indonesian macaque isolate, and 39 human isolates from Southeast Asia, the South Pacific, and the Caribbean and Americas. Nucleotide sequence alignment revealed few deletions and no repeat sequences in the 3Ј NCR of DEN 2 viruses and showed that much of the 3Ј NCR was well conserved. The strains could be divided into two groups, sylvatic and human/mosquito/macaque, based on nucleotide sequence homology. A hypervariable region was identified immediately following the NS5 stop codon, which involved a 2-10 nucleotide deletion in human, mosquito, and macaque isolates compared with the sylvatic strains. The DEN 2 3ЈNCR was also compared with 3ЈNCR sequences from strains of DEN 1, DEN 3, and DEN 4 viruses. DEN 1 was found to have four copies of an eight nucleotide imperfect repeat following the NS5 stop codon, while DEN 4 virus had a deletion of 75 nucleotides in the 3ЈNCR. We propose that the variation in nucleotide sequence in the 3ЈNCR may have evolved as a function of DEN virus transmission and replication in different mosquito and non-human primate/human host cycles. The results from this study are consistent with the hypothesis that DEN viruses arose from sylvatic progenitors and evolved into human epidemic strains. However, the data do not support the hypothesis that variation in the 3ЈNCR correlates with DEN virus pathogenesis.

Phylogeography and evolutionary history of dengue virus type 3

Infection Genetics and Evolution, 2009

In this study, we revisited the phylogeography of the three of major DENV-3 genotypes and estimated its rate of evolution, based on the analysis of the envelope (E) gene of 200 strains isolated from 31 different countries around the world over a time period of 50 years . Our phylogenetic analysis revealed a geographical subdivision of DENV-3 population in several country-specific clades. Migration patterns of the main DENV-3 genotypes showed that genotype I was mainly circumspect to the maritime portion of Southeast-Asia and South Pacific, genotype II stayed within continental areas in South-East Asia, while genotype III spread across Asia, East Africa and into the Americas. No evidence for rampant cocirculation of distinct genotypes in a single locality was found, suggesting that some factors, other than geographic proximity, may limit the continual dispersion and reintroduction of new DENV-3 variants. Estimates of the evolutionary rate revealed no significant differences among major DENV-3 genotypes. The mean evolutionary rate of DENV-3 in areas with long-term endemic transmissions (i.e., Indonesia and Thailand) was similar to that observed in the Americas, which have been experiencing a more recent dengue spread. We estimated the origin of DENV-3 virus around 1890, and the emergence of current diversity of main DENV-3 genotypes between the middle 1960s and the middle 1970s, coinciding with human population growth, urbanization, and massive human movement, and with the description of the first cases of DENV-3 hemorrhagic fever in Asia. ß