Adult neurogenesis in the four-striped mice (Rhabdomys pumilio) (original) (raw)
Related papers
Adult neurogenesis in the four-striped mouse (Rhabdomys pumilio)
Neural Regeneration Research, 2014
In this study, we investigated non-captive four-striped mice (Rhabdomys pumilio) for evidence that adult neurogenesis occurs in the adult brain of animal models in natural environment. Ki-67 (a marker for cell proliferation) and doublecortin (a marker for immature neurons) immunostaining confirmed that adult neurogenesis occurs in the active sites of subventricular zone of the lateral ventricle with the migratory stream to the olfactory bulb, and the subgranular zone of the dentate gyrus of the hippocampus. No Ki-67 proliferating cells were observed in the striatum substantia nigra, amygdala, cerebral cortex or dorsal vagal complex. Doublecortin-immunoreactive cells were observed in the striatum, third ventricle, cerebral cortex, amygdala, olfactory bulb and along the rostral migratory stream but absent in the substantia nigra and dorsal vagal complex. The potential neurogenic sites in the four-striped mouse species could invariably lead to increased neural plasticity.
Adult neurogenesis in mammals - a theme with many variations
European Journal of Neuroscience, 2011
Investigations of adult neurogenesis in recent years have revealed numerous differences among mammalian species, reflecting the remarkable diversity in brain anatomy and function of mammals. As a mechanism of brain plasticity, adult neurogenesis might also differ due to behavioural specialization or adaptation to specific ecological niches. Because most research has focused on rodents and only limited data are available on other mammalian orders, it is hotly debated whether, in some species, adult neurogenesis also takes place outside of the well-characterized subventricular zone of the lateral ventricle and subgranular zone of the dentate gyrus. In particular, evidence for the functional integration of new neurons born in 'non-neurogenic' zones is controversial. Considering the promise of adult neurogenesis for regenerative medicine, we posit that differences in the extent, regional occurrence and completion of adult neurogenesis need to be considered from a speciesspecific perspective. In this review, we provide examples underscoring that the mechanisms of adult neurogenesis cannot simply be generalized to all mammalian species. Despite numerous similarities, there are distinct differences, notably in neuronal maturation, survival and functional integration in existing synaptic circuits, as well as in the nature and localization of neural precursor cells. We also propose a more appropriate use of terminology to better describe these differences and their relevance for brain plasticity under physiological and pathophysiological conditions. In conclusion, we emphasize the need for further analysis of adult neurogenesis in diverse mammalian species to fully grasp the spectrum of variation of this adaptative mechanism in the adult CNS.
Acta Histochemica, 2009
Neurogenesis in the adult hippocampus is differentially influenced by the genetic background. We examined the differences in Ki-67 (a proliferating cell marker) and doublecortin (DCX; an immature progenitor cell marker) immunolabelling in the dentate gyrus (DG) of the adult hippocampus in three strains of mice (ICR, C57BL/6, and BALB/c) to evaluate the effect of genetic background on adult hippocampal neurogenesis. All strains showed constitutive immunoreactivity of either Ki-67 or DCX in the DG of the adult hippocampus. C57BL/6 mice showed significantly higher levels of Ki-67-immunopositive cells in the subgranular zone (SGZ) of the DG (approximately 2.2-fold) compared to ICR and BALB/c mice. The greatest number of DCX-immunopositive cells was found in C57BL/6 (approximately 1.6-fold), which differed significantly from ICR and BALB/c mice. However, there was no significant difference in the number of Ki-67- and DCX-immunopositive cells between BALB/c and ICR mice. Genetic differences with respect to certain aspects of hippocampal neurogenesis in adult mice may influence hippocampal functions, including learning and memory.
Neurogenesis in the adult mammalian brain
Clinical Neuroscience Research, 2001
The concept of the CNS cell composition stability has recently undergone significant changes. It was earlier believed that neurogenesis in the mammalian CNS took place only during embryonic and early postnatal development. New approaches make it possible to prove that neurogenesis takes part even in the adult brain. The present review summarizes the data about the neural stem cell. It has been demonstrated that new neurons are constantly formed in adult mammals, including man. In two brain zones, subventricular zone and dentate gyrus, neurogenesis appears to proceed throughout the entire life of mammals, including man. The newly arising neurons are essential for some important processes, such as memory and learning. Stem cells were found in the subependymal and/or ependymal layer. They express nestin and have a low mitotic activity. During embryogenesis, the stem cell divides asymmetrically: one daughter cell resides as the stem cell in the ependymal layer and another migrates to the subventricular zone. There it gives rise to a pool of dividing precursors, from which neural and glial cells differentiate and migrate to the sites of final localization. The epidermal and fibroblast growth factors act as mitogens for the neural stem cell. The neural stem cell gives rise to the cells of all germ layers in vitro and has a wide potential for differentiation in the adult organism. Hence, it can be used as a source of various cell types of the nervous tissue necessary for cellular transplantation therapy.
Adult neurogenesis in the African giant rat (Cricetomysgambianus, waterhouse)
Metabolic Brain Disease, 2014
Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain
Nature Neuroscience, 2008
Neurogenesis occurs continuously in the forebrain of adult mammals, but the functional importance of adult neurogenesis is still unclear. Here, using a genetic labeling method in adult mice, we found that continuous neurogenesis results in the replacement of the majority of granule neurons in the olfactory bulb and a substantial addition of granule neurons to the hippocampal dentate gyrus. Genetic ablation of newly formed neurons in adult mice led to a gradual decrease in the number of granule cells in the olfactory bulb, inhibition of increases in the granule cell number in the dentate gyrus and impairment of behaviors in contextual and spatial memory, which are known to depend on hippocampus. These results suggest that continuous neurogenesis is required for the maintenance and reorganization of the whole interneuron system in the olfactory bulb, the modulation and refinement of the existing neuronal circuits in the dentate gyrus and the normal behaviors involved in hippocampal-dependent memory.
Adult Neurogenesis in Mammals: An Identity Crisis
The Journal of Neuroscience, 2002
The study of neurogenesis in the adult brain is among the most exciting and fastest moving areas of neuroscience today. In contrast to the high rate of neurogenesis in some vertebrates (Nottebohm, 2002), unambiguous evidence for new neurons in normal adult mammals ranging from rodents to primates has been confined to the dentate gyrus and olfactory bulb (Lois and Alvarez