Transcriptional Regulation of Human Dual Specificity Protein Phosphatase 1 (DUSP1) Gene by Glucocorticoids (original) (raw)
Related papers
The Journal of biological chemistry, 2016
Although, the mitogen-activated protein kinase (MAPK) phosphatase, DUSP1, mediates dexamethasone-induced repression of MAPKs, 14 out of 46 interleukin-1β (IL1B)-induced mRNAs were significantly enhanced by DUSP1 over-expression in pulmonary A549 cells. These include the interferon regulatory factor, IRF1, and the chemokine, CXCL10. Of these DUSP1-enhanced mRNAs, 10, including CXCL10, were IRF1-dependent. MAPK inhibitors and DUSP1 over-expression prolonged IRF1 expression by elevating transcription, and increasing IRF1 mRNA and protein stability. Conversely, DUSP1 silencing increased IL1B-induced MAPK phosphorylation, while significantly reducing IRF1 protein expression at 4h. This confirms a regulatory network, whereby DUSP1 switches off MAPKs to maintain IRF1 expression. There was no repression of IRF1 expression by dexamethasone in primary human bronchial epithelial cells, and in A549 cells IL1B-induced IRF1 protein was only modestly and transiently repressed. While dexamethasone ...
Journal of Molecular Endocrinology, 2008
Glucocorticoids (GCs) are known to inhibit mitogen-activated protein kinase (MAPK) signaling. This has been suggested to involve induced expression of MAPK-phosphatase 1 (DUSP1), which dephosphorylates and inactivates MAPKs. However, the mechanism for the transcriptional activation by GCs of DUSP1 or the identification of a GC-responsive region of the gene has so far not been described. To identify GC receptor (GR) binding to the human DUSP1 promoter in vivo, we used a chromatin immunoprecipitation (ChIP) assay and found GR to bind to a region w K1 . 4 kb upstream of the transcription start site. Using promoter deletion constructs, we identified a GC-responsive region between position K1266 and K1380 bp of the DUSP1 promoter. However, no direct binding of GR to this GC-responsive region was detected in an electrophoretic mobility shift assay (EMSA). Instead, we identified binding of CCAAT/enhancer-binding protein beta (C/EBPb) to a region between K1311 and K1304 bp of the DUSP1 promoter by EMSA and ChIP. Furthermore, mutation of the C/EBP binding site resulted in a dramatic loss of GC-inducible reporter gene expression, demonstrating the GC responsiveness of the DUSP1 gene to be located to a binding site for C/EBP in the DUSP1 promoter. Also, given that a GR mutant (GR LS7 ), incapable of transactivating through GC-responsive elements, still was able to bind to the DUSP1 gene in vivo and induce DUSP1 mRNA expression following treatment with GCs suggests the mode of GC activation to be mediated by a tethering mechanism involving the GR and the DUSP1 promoter-bound C/EBPb.
Impaired Dual-Specificity Protein Phosphatase DUSP4 Reduces Corticosteroid Sensitivity
Molecular pharmacology, 2017
We have reported that phosphorylation of the glucocorticoid receptor (GR) at Ser(226) reduces GR nuclear translocation, resulting in corticosteroid insensitivity in patients with severe asthmas. A serine/threonine protein phosphatase 2A, which regulates c-Jun N-terminal kinase (JNK) 1 and GR-Ser(226) signaling, is involved in this mechanism. Here, we further explored protein kinase dual-specificity phosphatases (DUSPs) with the ability to dephosphorylate JNK, and identified DUSP4 as a phosphatase involved in the regulation of corticosteroid sensitivity. The effects of knocking down DUSPs (DUSP1, 4, 8, 16, and 22) by small interfering RNA (siRNA) were evaluated in a monocytic cell line (U937). Corticosteroid sensitivity was determined by dexamethasone enhancement of FK506-binding protein 51 or inhibition of tumor necrosis factor α (TNFα)-induced interferon γ and interleukin 8 expression and GR translocation from cell cytoplasm to nucleus. The nuclear/cytoplasmic GR, phosphorylation l...
Anti-Inflammatory Chromatinscape Suggests Alternative Mechanisms of Glucocorticoid Receptor Action
Immunity, 2017
Despite the widespread use of glucocorticoids (GCs), their anti-inflammatory effects are not understood mechanistically. Numerous investigations have examined the effects of glucocorticoid receptor (GR) activation prior to inflammatory challenges. However, clinical situations are emulated by a GC intervention initiated in the midst of rampant inflammatory responses. To characterize the effects of a late GC treatment, we profiled macrophage transcriptional and chromatinscapes with Dexamethasone (Dex) treatment before or after stimulation by lipopolysaccharide (LPS). The late activation of GR had a similar gene-expression profile as from GR pre-activation, while ameliorating the disruption of metabolic genes. Chromatin occupancy of GR was not predictive of Dex-regulated gene expression, contradicting the "trans-repression by tethering" model. Rather, GR activation resulted in genome-wide blockade of NF-κB interaction with chromatin and directly induced inhibitors of NF-κB an...
Anti-inflammatory glucocorticoid action: genomic insights and emerging concepts
Current Opinion in Pharmacology, 2020
Glucocorticoids (GCs) are widely used immunomodulators. They regulate gene expression by binding and activating the Glucocorticoid Receptor (GR), but underlying transcriptional mechanisms remain enigmatic. This review summarizes recent findings identifyingspecific GR-bound DNA sequences whose configuration may affect transcriptional output. Additional factors affecting GR's anti-inflammatory actions, including different chromatin states such as DNAse hypersensitive regions and histone marks will be discussed, together with the relevant transcriptional co-regulators and promoter/enhancer features. Furthermore, the involvement of non-coding RNAs such as lncRNAs, miRNAs and eRNAs adds another level of regulation to the GR's transcriptional activity. Characterizing and understanding these multiple mechanisms will be crucial for developing more targeted immunomodulatory therapies with reduced adverse effects such as obesity, diabetes and osteoporosis.
The Journal of Experimental Medicine, 2005
Glucocorticoids are the most effective antiinflammatory agents for the treatment of chronic inflammatory diseases even though some diseases, such as chronic obstructive pulmonary disease (COPD), are relatively glucocorticoid insensitive. However, the molecular mechanism of this glucocorticoid insensitivity remains uncertain. We show that a defect of glucocorticoid receptor (GR) deacetylation caused by impaired histone deacetylase (HDAC) 2 induces glucocorticoid insensitivity toward nuclear factor (NF)-κB–mediated gene expression. Specific knockdown of HDAC2 by RNA interference resulted in reduced sensitivity to dexamethasone suppression of interleukin 1β–induced granulocyte/macrophage colony-stimulating factor production. Loss of HDAC2 did not reduce GR nuclear translocation, GR binding to glucocorticoid response element (GRE) on DNA, or GR-induced DNA or gene induction but inhibited the association between GR and NF-κB. GR becomes acetylated after ligand binding, and HDAC2-mediated...
Differential regulation of the human and gene expression by glucocorticoids
Journal of Steroid Biochemistry and Molecular Biology, 2005
Multidrug resistance proteins, which catalyse the detoxification of xenobiotics and excretion of metabolites, are very often controlled at the transcriptional level by interaction of exogenous compounds or hormones with nuclear receptors. Since synthetic glucocorticoids have found extensive use as anti-inflammatory drugs, also in the inhaled form in the treatment of asthma, lung cancer is potentially highly prone to transcriptional induction of multidrug resistance proteins by these steroids. MRP3 and MRP2 are major active anionic conjugate transporters in human cells and play a significant role in clinical multidrug resistance in cancer.
Molecular and cellular biology, 1999
Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N-terminal transactivation domain of GR, tau1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-tau1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in tau1 that reduce tau1 transactivation activity in vivo lead to a reduced binding of tau1 to the SAGA complex and conversely, mutations increasing the transactivation activity of tau1 lead to an increased binding of tau1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with tau1. GAL4-tau1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low-activity tau1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activit...
Modulation of transcription parameters in glucocorticoid receptor-mediated repression
Molecular and Cellular Endocrinology, 2008
Glucocorticoid receptors (GRs) affect both gene induction and gene repression. The disparities of receptor binding to DNA and increased vs. decreased gene expression have suggested significant mechanistic differences between GR-mediated induction and repression. Numerous transcription factors are known to modulate three parameters of gene induction: the total activity (V max ) and position of the dose-response curve with glucocorticoids (EC 50 ) and the percent partial agonist activity with antiglucocorticoids. We have examined the effects on GR-mediated repression of five modulators (coactivators TIF2 [GRIP1, SRC-2] and SRC-1, corepressor SMRT, and comodulators STAMP and Ubc9), a glucocorticoid steroid (deacylcortivazol [DAC]) of very different structure, and an inhibitor of histone deacetylation (trichostatin A [TSA]). These factors interact with different domains of GR and thus are sensitive topological probes of GR action. These agents altered the V max , EC 50 , and percent partial agonist activity of endogenous and exogenous repressed genes similarly to that previously observed for GR-regulated gene induction. Collectively, these results suggest that GR-mediated induction and repression share many of the same molecular interactions and that the causes for different levels of gene transcription arise from more distal downstream steps.