How much does agriculture depend on pollinators? Lessons from long-term trends in crop production (original) (raw)

Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification

Global Change Biology, 2019

The global increase in the proportion of land cultivated with pollinator-dependent crops implies increased reliance on pollination services. Yet agricultural practices themselves can profoundly affect pollinator supply and pollination. Extensive mon-ocultures are associated with a limited pollinator supply and reduced pollination, whereas agricultural diversification can enhance both. Therefore, areas where agricultural diversity has increased, or at least been maintained, may better sustain high and more stable productivity of pollinator-dependent crops. Given that >80% of all crops depend, to varying extents, on insect pollination, a global increase in agricultural pollinator dependence over recent decades might have led to a concomitant increase in agricultural diversification. We evaluated whether an increase in the area

Pollinator shortage and global crop yield

Communicative & Integrative Biology, 2009

A pollinator decline caused by environmental degradation might be compromising the production of pollinator-dependent crops. In a recent article, we compared 45 year series in yield, production and cultivated area of pollinator-dependent and nondependent crop around the world. If pollinator shortage is occurring globally, we expected a lower annual growth rate in yield for pollinator-dependent than nondependent crops, but a higher growth in cultivated area to compensate the lower yield. We have found little evidence for the first "yield" prediction but strong evidence for the second "area" prediction. Here, we present an additional analysis to show that the first and second predictions are both supported for crops that vary in dependency levels from nondependent to moderate dependence (i.e., up to 65% average yield reduction without pollinators). However, those crops for which animal pollination is essential (i.e., 95% average yield reduction without pollinators) showed higher growth in yield and lower expansion in area than expected in a pollination shortage scenario. We propose that pollination management for highly pollinator-dependent crops, such us renting hives or hand pollination, might have compensated for pollinator limitation of yield.

Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency

Current Biology, 2008

There is evidence that pollinators are declining as a result of local and global environmental degradation . Because a sizable proportion of the human diet depends directly or indirectly on animal pollination [5], the issue of how decreases in pollinator stocks could affect global crop production is of paramount importance . Using the extensive FAO data set [9], we compared 45 year series in yield, and total production and cultivated area of pollinator-dependent and nondependent crops . We investigated temporal trends separately for the developed and developing world because differences in agricultural intensification, and socioeconomic and environmental conditions might affect yield and pollinators [10-13]. Since 1961, crop yield (Mt/ha) has increased consistently at average annual growth rates of w1.5%. Temporal trends were similar between pollinator-dependent and nondependent crops in both the developed and developing world, thus not supporting the view that pollinator shortages are affecting crop yield at the global scale. We further report, however, that agriculture has become more pollinator dependent because of a disproportionate increase in the area cultivated with pollinatordependent crops. If the trend toward favoring cultivation of pollinator-dependent crops continues, the need for the service provided by declining pollinators will greatly increase in the near future.

Pollinator shortage and global crop yield: Looking at the whole spectrum of pollinator dependency

Communicative & integrative biology, 2009

A pollinator decline caused by environmental degradation might be compromising the production of pollinator-dependent crops. In a recent article, we compared 45 year series (1961-2006) in yield, production and cultivated area of pollinator-dependent and nondependent crop around the world. If pollinator shortage is occurring globally, we expected a lower annual growth rate in yield for pollinator-dependent than nondependent crops, but a higher growth in cultivated area to compensate the lower yield. We have found little evidence for the first "yield" prediction but strong evidence for the second "area" prediction. Here, we present an additional analysis to show that the first and second predictions are both supported for crops that vary in dependency levels from nondependent to moderate dependence (i.e., up to 65% average yield reduction without pollinators). However, those crops for which animal pollination is essential (i.e., 95% average yield reduction without ...

Importance of pollinators in changing landscapes for world crops

Proceedings of the Royal Society B: Biological Sciences, 2007

The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, windpollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

Economic valuation of the vulnerability of world agriculture confronted with pollinator decline

Ecological Economics, 2009

There is mounting evidence of pollinator decline all over the world and consequences in many agricultural areas could be significant. We assessed these consequences by measuring 1) the contribution of insect pollination to the world agricultural output economic value, and 2) the vulnerability of world agriculture in the face of pollinator decline. We used a bioeconomic approach, which integrated the production dependence ratio on pollinators, for the 100 crops used directly for human food worldwide as listed by FAO. The total economic value of pollination worldwide amounted to €153 billion, which represented 9.5% of the value of the world agricultural production used for human food in 2005. In terms of welfare, the consumer surplus loss was estimated between €190 and €310 billion based upon average price elasticities of − 1.5 to − 0.8, respectively. Vegetables and fruits were the leading crop categories in value of insect pollination with about €50 billion each, followed by edible oil crops, stimulants, nuts and spices. The production value of a ton of the crop categories that do not depend on insect pollination averaged €151 while that of those that are pollinator-dependent averaged €761. The vulnerability ratio was calculated for each crop category at the regional and world scales as the ratio between the economic value of pollination and the current total crop value. This ratio varied considerably among crop categories and there was a positive correlation between the rate of vulnerability to pollinators decline of a crop category and its value per production unit.

Economic valuation of the vulnerability of world agriculture confronted to pollinator decline

HAL (Le Centre pour la Communication Scientifique Directe), 2008

There is mounting evidence of pollinator decline all over the world and consequences in many agricultural areas could be significant. We assessed these consequences by measuring 1) the contribution of insect pollination to the world agricultural output economic value, and 2) the vulnerability of world agriculture in the face of pollinator decline. We used a bioeconomic approach, which integrated the production dependence ratio on pollinators, for the 100 crops used directly for human food worldwide as listed by FAO. The total economic value of pollination worldwide amounted to €153 billion, which represented 9.5% of the value of the world agricultural production used for human food in 2005. In terms of welfare, the consumer surplus loss was estimated between €190 and €310 billion based upon average price elasticities of-1.5 to-0.8, respectively. Vegetables and fruits were the leading crop categories in value of insect pollination with about €50 billion each, followed by edible oil crops, stimulants, nuts and spices. The production value of a ton of the crop categories that do not depend on insect pollination averaged €151 while that of those that are pollinatordependent averaged €761. The vulnerability ratio was calculated for each crop category at the regional and world scales as the ratio between the economic value of pollination and the current total crop value. This ratio varied considerably among crop categories and there was a positive correlation between the rate of vulnerability to pollinators decline of a crop category and its value per production unit. Looking at the capacity to nourish the world population after pollinator loss, the production of 3 crop categories-namely fruits, vegetables, and stimulants-will clearly be below the current consumption level at the world scale and even more so for certain regions like Europe. Yet, although our valuation clearly demonstrates the economic importance of insect pollinators, it cannot be considered as a scenario since it does not take into account the strategic responses of the markets.

Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

PeerJ, 2014

Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect po...

Implications of Pollinator Biodiversity Decline for Food Security, Economy, and Pollinator Conservation Policies

E3S Web of Conferences, 2021

Pollinator decline is one of the most significant ecological problems of the 21stcentury. This decline threatens human food security and global economy. In order to address this problem governments across Europe and the USA have introduced national pollinator conservation strategies. These strategies, however, significantly differ in approaches to conservation. The differences at least in part stem from lack of consensus in the literature on whether pollinator biodiversity or abundance of a few common species determines crop pollination. Critical evaluation of empirical evidence available to date outlined in this paper suggests that pollinator biodiversity rather than abundance of dominant species determine quality, magnitude and resilience of pollination ecosystem services to agriculture. In order to maintain pollinator biodiversity conservation strategies and initiatives should focus on enhancing habitat quality, complementarity and connectivity, rather than solely on increasing f...

Global growth and stability of agricultural yield decrease with pollinator dependence

Proceedings of the National Academy of Sciences, 2011

Human welfare depends on the amount and stability of agricultural production, as determined by crop yield and cultivated area. Yield increases asymptotically with the resources provided by farmers' inputs and environmentally sensitive ecosystem services. Declining yield growth with increased inputs prompts conversion of more land to cultivation, but at the risk of eroding ecosystem services. To explore the interdependence of agricultural production and its stability on ecosystem services, we present and test a general graphical model, based on Jensen's inequality, of yield-resource relations and consider implications for land conversion. For the case of animal pollination as a resource influencing crop yield, this model predicts that incomplete and variable pollen delivery reduces yield mean and stability (inverse of variability) more for crops with greater dependence on pollinators. Data collected by the Food and Agriculture Organization of the United Nations during 1961-2008 support these predictions. Specifically, crops with greater pollinator dependence had lower mean and stability in relative yield and yield growth, despite global yield increases for most crops. Lower yield growth was compensated by increased land cultivation to enhance production of pollinator-dependent crops. Area stability also decreased with pollinator dependence, as it correlated positively with yield stability among crops. These results reveal that pollen limitation hinders yield growth of pollinator-dependent crops, decreasing temporal stability of global agricultural production, while promoting compensatory land conversion to agriculture. Although we examined crop pollination, our model applies to other ecosystem services for which the benefits to human welfare decelerate as the maximum is approached.