Microbial population and diversity on the exoskeletons of four insect species associated with gorse (Ulex europaeus L.) (original) (raw)

Bacterial Endosymbiont Localization in Hyalesthes obsoletus, the Insect Vector of Bois Noir in Vitis vinifera

Applied and Environmental Microbiology, 2011

Here we present the first full characterization of the bacterial community of this important disease vector collected from BN-contaminated areas in Piedmont, Italy. Length heterogeneity PCR and denaturing gradient gel electrophoresis analysis targeting the 16S rRNA gene revealed the presence of a number of bacteria stably associated with the insect vector. In particular, symbiotic bacteria detected by PCR with high infection rates in adult individuals fell within the "Candidatus Sulcia muelleri" cluster in the Bacteroidetes and in the "Candidatus Purcelliella pentastirinorum" group in the Gammaproteobacteria, both previously identified in different leafhoppers and planthoppers. A high infection rate (81%) was also shown for another symbiont belonging to the Betaproteobacteria, designated the HO1-V symbiont. Because of the low level of 16S rRNA gene identity (80%) with the closest relative, an uncharacterized symbiont of the tick Haemaphysalis longicornis, we propose the new name "Candidatus Vidania fulgoroideae." Other bacterial endosymbionts identified in H. obsoletus were related to the intracellular bacteria Wolbachia pipientis, Rickettsia sp., and "Candidatus Cardinium hertigii." Fluorescent in situ hybridization coupled with confocal laser scanning microscopy and transmission electron microscopy showed that these bacteria are localized in the gut, testicles, and oocytes. As "Ca. Sulcia" is usually reported in association with other symbiotic bacteria, we propose that in H. obsoletus, it may occur in a bipartite or even tripartite relationship between "Ca. Sulcia" and "Ca. Purcelliella," "Ca. Vidania," or both.

Microorganismos endosimbiontes de insectos escama

Tip revista especializada en ciencias químico-biológicas, 2017

The evolutionary and ecological success of insects is largely due to their associated bacteria and fungi that expand their metabolic capacities or allow them to resist stress or parasites. Some of these associations possibly originated hundreds of millions of years ago and have resulted in such interdependence that in some cases the insect and bacteria may not exist separately. This has also led to a significant reduction in the genome size of bacterial symbionts and to the maternal transfer of symbionts to progeny. The study of insect symbionts has recently gained great interest and some of the biological functions of symbionts within hosts have been identified. Scale insects or cochineals feed on the sap of plants, which is rich in carbon but poor in nitrogen and so they require symbionts to compensate for diet deficiencies. Some scale insects are devastating crop pests. In this article, we review the symbionts of some scale insects focusing on carmine-and wax cochineals, which have commercial, art and craft interest. In the cochineals studied we found diverse microbial communities that can synthesize amino acids, vitamins, fix nitrogen or recycle the waste products of nitrogen metabolism.

Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutriti

Journal of Applied Microbiology, 2007

The largest class of invertebrates, Insecta, is involved in several types of symbiosis, mainly with bacteria. A high diversity of bacteria has been reported from different types of insect, including sugar beet root maggot -Tetanops myopaeformis; gypsy moth -Lymantria dispar; migratory grasshopper -Melanoplus sanguinipes; cabbage moth Abstract Aims: To evaluate whether the gut bacteria of insecticide-resistant, insecticidesusceptible and field-caught populations of the lepidopteran insect pest diamondback moth (DBM) -Plutella xylostella (L.) -are variable and their role in host protection and nutrition. Methods and Results: The gut bacterial populations of the three DBM larvae populations were found to be significantly different, irrespective of the developmental stage. The 16S rRNA gene sequence analysis of the DBM gut bacteria revealed that the bacterial population from the prothiofos-resistant larval gut was more diversified with Pseudomonas sp., Stenotrophomonas sp., Acinetobacter sp., and Serratia marcescens. Meanwhile, the susceptible larvae were associated with Brachybacterium sp., Acinetobacter sp. and S. marcescens and the fieldcaught population harboured a rather simple gut microflora of phylotypes belonging to Serratia. The siderophore-producing Pseudomonas sp. strain PRGB06 showed antagonistic activity towards entomopathogenic fungi, including Beaveria bassiana, Hirsutella thompsonii, Metarhizium anisopliae, Paecilomyces sp., and Paecilomyces tenuipes, while the chitinase-producing S. marcescens enhanced the larval growth and development. Conclusion: There was a significant variation in the gut bacteria from the three different populations of DBM. The production of antifungal siderophore compounds, like pyoverdine, may contribute to host antagonism against entomopathogens. The production of chitinase by gut bacteria appeared to contribute to host nutrition. Significance and Impact of the Study: The results provide the first comprehensive description of the gut microbial communities in three different populations of an important crucifer pest DBM and suggest that the bacteria associated with the insect pest could be of interest for developing a pest management strategy.

A Cross-Taxon Analysis of Insect-Associated Bacterial Diversity

Although it is well known that plants and animals harbor microbial symbionts that can influence host traits, the factors regulating the structure of these microbial communities often remain largely undetermined. This is particularly true for insect-associated microbial communities, as few cross-taxon comparisons have been conducted to date. To address this knowledge gap and determine how host phylogeny and ecology affect insect-associated microbial communities, we collected 137 insect specimens representing 39 species, 28 families, and 8 orders, and characterized the bacterial communities associated with each specimen via 16S rRNA gene sequencing. Bacterial taxa within the phylum Proteobacteria were dominant in nearly all insects sampled. On average, the insect-associated bacterial communities were not very diverse, with individuals typically harboring fewer than 8 bacterial phylotypes. Bacterial communities also tended to be dominated by a single phylotype; on average, the most abundant phylotype represented 54.7% of community membership. Bacterial communities were significantly more similar among closely related insects than among less-related insects, a pattern driven by within-species community similarity but detected at every level of insect taxonomy tested. Diet was a poor predictor of bacterial community composition. Individual insect species harbored remarkably unique communities: the distribution of 69.0% of bacterial phylotypes was limited to unique insect species, whereas only 5.7% of phylotypes were detected in more than five insect species. Together these results suggest that host characteristics strongly regulate the colonization and assembly of bacterial communities across insect lineages, patterns that are driven either by co-evolution between insects and their symbionts or by closely related insects sharing conserved traits that directly select for similar bacterial communities.

Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment

Scientific Reports

Some lineages of ants, termites, and beetles independently evolved a symbiotic association with lignocellulolytic fungi cultivated for food, in a lifestyle known as fungiculture. Fungus-growing insects’ symbiosis also hosts a bacterial community thought to integrate their physiology. Similarities in taxonomic composition support the microbiota of fungus-growing insects as convergent, despite differences in fungus-rearing by these insects. Here, by comparing fungus-growing insects to several hosts ranging diverse dietary patterns, we investigate whether the microbiota taxonomic and functional profiles are characteristic of the fungiculture environment. Compared to other hosts, the microbiota associated with fungus-growing insects presents a distinctive taxonomic profile, dominated by Gammaproteobacteria at class level and by Pseudomonas at genera level. Even with a functional profile presenting similarities with the gut microbiota of herbivorous and omnivorous hosts, some differentia...

Pyrosequencing Uncovers a Shift in Bacterial Communities Across Life Stages of Octodonta nipae (Coleoptera: Chrysomelidae)

Frontiers in Microbiology, 2019

Bacterial symbionts of insects affect a wide array of host traits including fitness and immunity. Octodonta nipae (Maulik), commonly known as hispid leaf beetle is a destructive palm pest around the world. Understanding the dynamics of microbiota is essential to unravel the complex interplay between O. nipae and its bacterial symbionts. In this study, bacterial 16S rRNA V3-V4 region was targeted to decipher the diversity and dynamics of bacterial symbionts across different life stages [eggs, larvae, pupae, and adult (male and female)] and reproductive organs (ovaries and testis) of O. nipae. Clustering analysis at ≥97% similarity threshold produced 3,959 operational taxonomic units (OTUs) that belonged to nine different phyla. Proteobacteria, Actinobacteria, and Firmicutes represented the bulk of taxa that underwent notable changes during metamorphosis. Enterobacteriaceae and Dermabacteraceae were the most abundant families in immature stages (eggs, larvae, and pupae), while Anaplasmataceae family was dominated in adults (male and female) and reproductive organs (ovaries and testis). The genus Serratia and Lactococcus were most abundant in eggs, whereas Pantoea and Brachybacterium represented the bulk of larvae and pupae microbiota. Interestingly the genus Wolbachia found positive to all tested samples and was recorded extremely high (>64%) in the adults and reproductive organs. The bacteria varied across the developmental stages and responsible for various metabolic activities. Selection choice exerted by the insect host as a result of its age or developmental stage could be the main reason to ascertain the shift in the bacteria populations. Maternally inherited Wolbachia was found to be an obligate endosymbiont infecting all tested life stages, body parts, and tissues. These outcomes foster our understanding of the intricate associations between bacteria and O. nipae and will incorporate in devising novel pest control strategies against this palm pest.

Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi

Ecological Entomology, 2006

1. Colonisation of host trees by an endophytic herbivore, the spruce beetle, Dendroctonus rufipennis , is accompanied by invasion of its galleries by a number of fungal species. Four of these associated species were identified as Leptographium abietinum , Aspergillus fumigatus , Aspergillus nomius , and Trichoderma harzianum .

Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects

Ecology Letters, 2010

Endosymbiosis is a pervasive, powerful force in arthropod evolution. In the recent literature, bacterial symbionts of insects have been shown to function as reproductive manipulators, nutritional mutualists and as defenders of their hosts. Fungi, like bacteria, are also frequently associated with insects. Initial estimates suggest that insect-fungal endosymbionts are hyperdiverse, yet there has been comparatively little research investigating the roles that fungi play in their insect hosts. In many systems in which the bacterial symbionts are well-characterized, the possible presence of fungi has been routinely ignored. Why has there been so little research on this important group of symbionts? Here, we explore the differences between fungal and bacterial endosymbiotic insect mutualists. We make predictions about why a bacterium or fungus might be found associated with an insect host given particular ecological, physiological, or evolutionary conditions. We also touch on the various hurdles for studying fungal vs. bacterial endosymbionts and potential future research directions.

Endosymbiotic microorganisms of scale insects

2017

The evolutionary and ecological success of insects is largely due to their associated bacteria and fungi that expand their metabolic capacities or allow them to resist stress or parasites. Some of these associations possibly originated hundreds of millions of years ago and have resulted in such interdependence that in some cases the insect and bacteria may not exist separately. This has also led to a significant reduction in the genome size of bacterial symbionts and to the maternal transfer of symbionts to progeny. The study of insect symbionts has recently gained great interest and some of the biological functions of symbionts within hosts have been identified. Scale insects or cochineals feed on the sap of plants, which is rich in carbon but poor in nitrogen and so they require symbionts to compensate for diet deficiencies. Some scale insects are devastating crop pests. In this article, we review the symbionts of some scale insects focusing on carmine- and wax cochineals, which h...

Convergent bacterial microbiotas in the fungal agricultural systems of insects

mBio, 2014

The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have hig...