A comprehensive two-dimensional map of cytosolic proteins ofBacillus subtilis (original) (raw)
Related papers
Gel-free and Gel-based Proteomics in Bacillus subtilis
2006
The proteome of exponentially growing Bacillus subtilis cells was dissected by the implementation of shotgun proteomics and a semigel-based approach for a particu- lar exploration of membrane proteins. The current number of 745 protein identifications that was gained by the use of two-dimensional gel electrophoresis could be increased by 473 additional proteins. Therefore, almost 50% of the 2500 genes expressed
Molecular & Cellular Proteomics, 2014
In the growing field of systems biology, the knowledge of protein concentrations is highly required to truly understand metabolic and adaptational networks within the cells. Therefore we established a workflow relying on long chromatographic separation and mass spectrometric analysis by data independent, parallel fragmentation of all precursor ions at the same time (LC/MS E ). By prevention of discrimination of co-eluting low and high abundant peptides a high average sequence coverage of 40% could be achieved, resulting in identification of almost half of the predicted cytosolic proteome of the Gram-positive model organism Bacillus subtilis (>1,050 proteins). Absolute quantification was achieved by correlation of average MS signal intensities of the three most intense peptides of a protein to the signal intensity of a spiked standard protein digest. Comparative analysis with heavily labeled peptides (AQUA approach) showed the use of only one standard digest is sufficient for global quantification.
Journal of Chromatography B-analytical Technologies in The Biomedical and Life Sciences, 2007
With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteome was extensively studied throughout the years. Having the final goal to elucidate how life really functions, one basic requirement is to know the entirety of cellular proteins. This review presents how far we have got in unraveling the proteome of B. subtilis. The application of gel-based and gel-free technologies, the analyses of different subcellular proteome fractions, and the pursuance of various physiological strategies resulted in a coverage of more than one-third of B. subtilis theoretical proteome.
Electrophoresis, 1997
Data on the identification of proteins of Bacillus subtilis on two-dimensional (2-D) gels as well as their regulation are summarized and the identification of 56 protein spots is included. The pattern of proteins synthesized in Bacillus subtilis during exponential growth, during starvation for glucose or phosphate, or after the imposition of stresses like heat shock, salt- and ethanol stress as well as oxidative stress was analyzed. N-terminal sequencing of protein spots allowed the identification of 93 proteins on 2-D gels, which are required for the synthesis of amino acids and nucleotides, the generation of ATP, for glycolyses, the pentose phosphate cycle, the citric acid cycle as well as for adaptation to a variety of stress conditions. A computer-aided analysis of the 2-D gels was used to monitor the synthesis profile of more than 130 protein spots. Proteins performing housekeeping functions during exponential growth displayed a reduced synthesis rate during stress and starvation, whereas spots induced during stress and starvation were classified as specific stress proteins induced by a single stimulus or a group of related stimuli, or as general stress proteins induced by a variety of entrely different stimuli. The analysis of mutants in global regulators was initiated in order to establish a response regulation map for B. subtilis. These investigations demonstrated that the alternative sigma factor σB is involved in the regulation of almost all of the general stress proteins and that the phoPR two-component system is required for the induction of a large part but not all of the proteins induced by phosphate starvation.
Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis
Nature Communications, 2010
Functional genomics of the Gram-positive model organism Bacillus subtilis reveals valuable insights into basic concepts of cell physiology. In this study, we monitor temporal changes in the proteome, transcriptome and extracellular metabolome of B. subtilis caused by glucose starvation. For proteomic profiling, a combination of in vivo metabolic labelling and shotgun mass spectrometric analysis was carried out for five different proteomic subfractions (cytosolic, integral membrane, membrane, surface and extracellular proteome fraction), leading to the identification of ~52% of the predicted proteome of B. subtilis. Quantitative proteomic and corresponding transcriptomic data were analysed with Voronoi treemaps linking functional classification and relative expression changes of gene products according to their fate in the stationary phase. The obtained data comprise the first comprehensive profiling of changes in the membrane subfraction and allow in-depth analysis of major physiological processes, including monitoring of protein degradation.
Reliable and comprehensive multi-omics analysis is essential for researchers to understand and explore complex biological systems more completely. Bacillus subtilis is a model organism for Gram-positive spore-forming bacteria, and in-depth insight into the physiology and molecular basis of spore formation and germination in this organism requires advanced multilayer molecular datasets generated from the same sample. In this study, we evaluated two monophasic methods for polar and nonpolar compound extraction (acetonitrile/methanol/water; isopropanol/water, and 60% ethanol), and two biphasic methods (chloroform/methanol/water, and methyl tert-butyl ether/methanol/water) on coefficients of variation of analytes, identified metabolite composition and the quality of proteomics profiles. The analytical workflow comprises (1) parallel metabolite and protein extraction, (2) monophasic or biphasic sample extraction, (3) proteomics comparison and (4) multi-omics-based data visualization. The...
From the genome sequence to the protein inventory of Bacillus subtilis
PROTEOMICS, 2011
Owing to the low number of proteins necessary to render a bacterial cell viable, bacteria are extremely attractive model systems to understand how the genome sequence is translated into actual life processes. One of the most intensively investigated model organisms is Bacillus subtilis. It has attracted world-wide research interest, addressing cell differentiation and adaptation on a molecular scale as well as biotechnological production processes. Meanwhile, we are looking back on more than 25 years of B. subtilis proteomics. A wide range of methods have been developed during this period for the large-scale qualitative and quantitative proteome analysis. Currently, it is possible to identify and quantify more than 50% of the predicted proteome in different cellular subfractions. In this review, we summarize the development of B. subtilis proteomics during the past 25 years.
Identification of vegetative proteins for a two-dimensional protein index of Bacillus subtilis
Microbiology, 1997
Twenty-three of the most prominent spots which are visible on two-dimensional (2-D) protein gels of Bacillus subtilis crude extracts were selected as marker spots for the construction of a 2-D protein index. N-terminal sequencing of the corresponding proteins resulted in the identification of enzymes involved in glycolysis, TCA cycle, pentose phosphate cycle, amino acid metabolism, nucleotide biosynthesis and translation. Using computer analysis of the 2-D protein gels, most of these metabolic enzymes were found to be synthesized at a reduced rate after different stresses and glucose starvation. Such an approach permits a rapid and global evaluation of the regulation of different branches of metabolism in response to various physiological conditions.
Molecular & cellular proteomics : MCP, 2014
Systems biology based on high quality absolute quantification data, which are mandatory for the simulation of biological processes, successively becomes important for life sciences. We provide protein concentrations on the level of molecules per cell for more than 700 cytosolic proteins of the Gram-positive model bacterium Bacillus subtilis during adaptation to changing growth conditions. As glucose starvation and heat stress are typical challenges in B. subtilis' natural environment and induce both, specific and general stress and starvation proteins, these conditions were selected as models for starvation and stress responses. Analyzing samples from numerous time points along the bacterial growth curve yielded reliable and physiologically relevant data suitable for modeling of cellular regulation under altered growth conditions. The analysis of the adaptational processes based on protein molecules per cell revealed stress-specific modulation of general adaptive responses in terms of protein amount and proteome composition.
Journal of Proteome Research, 2010
The regulation of cell surface receptor expression is essential for immune cell differentiation and function. At the plasma membrane ubiquitination is an important posttranslational mechanism for regulating expression of a wide range of surface proteins. MARCH9, a member of the RING-CH family of transmembrane E3 ubiquitin ligases, down-regulates CD4, major histocompatibility complex-I (MHC), and ICAM-1 in lymphoid cells. To identify novel MARCH9 substrates, we used high throughput flow cytometry and quantitative mass spectrometry by stable isotope labeling by amino acids in cell culture (SILAC) to determine the differential expression of plasma membrane proteins in a MARCH9-expressing B cell line. This combined approach identified 13 potential new MARCH9 targets. All of the SILAC-identified targets for which antibodies were available were subsequently confirmed by flow cytometry, validating the proteomics results. A close correlation (r 2 ؍ 0.93) between -fold down-regulation as determined by SILAC and flow cytometry was found, with no false positive hits detected. The potential new MARCH9 substrates cover a wide range of functions and include receptor-type protein-tyrosine phosphatases (e.g. PTPRJ/CD148) as well as Fc ␥ receptor IIB (CD32B), HLA-DQ, signaling lymphocytic activation molecule (CD150), and polio virus receptor (CD155). The identification of plasma membrane targets by SILAC with confirmation by flow cytometry represents a novel and powerful approach to analyze changes in the plasma membrane proteome.