Technical Design Report for the: PANDA Micro Vertex Detector (original) (raw)
Abstract
AI
This technical design report details the PANDA Micro Vertex Detector, a critical component of the PANDA experiment aimed at investigating strong interactions through antiproton annihilation. A comprehensive overview of the PANDA experiment and its tracking concept is provided, emphasizing the advanced technologies and methodologies employed in detector design and data acquisition within the context of the new Facility for Antiproton and Ion Research (FAIR). The report outlines the project's significance in nuclear and hadron physics and discusses the engineering challenges and solutions inherent in the development of the micro vertex detector.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (240)
- PANDA collaboration. Letter of intent for: PANDA -Strong Interaction Studies with An- tiprotons. Technical report FAIR-ESAC, 2004.
- GSI Helmholtzzentrum für Schwerionen- forschung. FAIR -An International Acceler- ator Facility for Beams of Ions and Antipro- tons. Baseline technical report, 2006. http: //www.gsi.de/fair/reports/btr.html.
- FAIR -Facility for Antiproton and Ion Research. Green Paper -The Modular- ized Start Version. Technical Report, 2009. http://www.fair-center.de/ fileadmin/fair/publications_FAIR/ FAIR_GreenPaper_2009.pdf.
- P. Spiller and G. Franchetti. The FAIR ac- celerator project at GSI. Nucl. Instr. Meth., A561:305-309, 2006.
- W.F. Henning. FAIR -recent developments and status. Nucl. Instr. Meth., A805:502c- 510c, 2008.
- PANDA collaboration. Physics Performance Report for: PANDA -Strong Interaction Stud- ies with Antiprotons. arXiv:0903.3905v1 [hep- ex], 2009.
- FAIR Technical Design Report, HESR. Technical report, Gesellschaft für Schwerio- nenforschung (GSI), Darmstadt, April 2008. http://www-win.gsi.de/FAIR-EOI/PDF/ TDR_PDF/TDR_HESR-TRV3.1.2.pdf.
- A. Lehrach et al. Beam Dynamics of the High- Energy Storage Ring (HESR) for FAIR. Int. J. Mod. Phys. E, 18(2):420-429, 2009.
- B. Gålnander et al. Status of Electron Cooler Design for HESR. Proc. of the European Accelerator Conference EPAC2008, GenoaProc. of the European Accelerator Con- ference EPAC2008, Genoa, THPP(049):3473- 3475, 2008.
- H. Stockhorst, D. Prasuhn, R. Maier and B. Lorentz. Cooling Scenario for the HESR Com- plex. AIP Conf. Proc., 821:190-195, 2006.
- B. Lorentz et al. HESR Linear Lattice Design. Proceedings of European Accelerator Confer- ence EPAC, Genova, MOPPC(112):325-327, 2008.
- D.M. Welsch et al. Closed Orbit Correc- tion and Sextupole Compensation Schemes for Normal-Conducting HESR. In the European Accelerator Conference EPAC2008, Genoa, THPC076, p. 3161, 2008.
- A. Lehrach et al. Beam Performance and Lumi- nosity Limitations in the High-Energy Storage Ring (HESR). Nucl. Instr. Meth., A561:289- 296, 2006.
- F. Hinterberger. Beam-target Interaction and Intrabeam Scattering in the HESR. Technical Report FZJ J ÜL-4206, 2006. ISSN: 0944-2952.
- O. Boine-Frankenheim, R. Hasse, F. Hinter- berger, A. Lehrach and P. Zenkevich. Cool- ing Equilibrium and Beam Loss with Internal Targets in High Energy Storage Rings. Nucl. Instr. Meth., A560:245-255, 2006.
- D. Reistad et al. Calculations on High-Energy Electron Cooling in the HESR. In Proceed- ings of the Workshop on Beam Cooling and Related Topics COOL2007, Bad Kreuznach, MOA2C05, p. 44, 2007.
- H. Stockhorst et al. Stochastic Cooling Devel- opments for the HESR at FAIR. Proc. of the European Accelerator Conference EPAC2008, GenoaProc. of the European Accelerator Con- ference EPAC2008, Genoa, THPP(055):3491- 3493, 2008.
- A. Täschner, E. Köhler, H.-W. Ortjohann and A. Khoukaz. High Density Cluster Jet Tar- get for Storage Ring Experiments. Nucl. Instr. Meth., A660(1):22-30, 2011.
- Chr. Bargholtz et al. Properties of the WASA pellet target and a stored intermediate-energy beam. Nucl. Instr. Meth., A587:178-187, 2008.
- M. Büscher et al. The Moscow-Jülich Frozen- Pellet Target. AIP Conf. Proc., 814:614-620, 2006.
- M. Büscher et al. Production of Hydrogen, Nitrogen and Argon Pellets with the Moscow- Jülich Pellet Target. Int. J. Mod. Phys. E, 18(2):505-520, 2009.
- A. Smirnov et al. Effective luminosity simula- tion for PANDA experiment at FAIR. In Pro- ceedings of COOL2009, Lanzhou, China, TH- PMCP002, 2009.
- PANDA collaboration. Technical Design Re- port for the Solenoid and Dipole Spectrometer Magnets. arxiv:0907.0169v1 [physics.ins-det], 2009.
- H. Staengle et al. Test of a large scale proto- type of the DIRC, a Cherenkov imaging detec- tor based on total internal reflection for BaBar at PEP-II. Nucl. Instr. Meth., A397:261-282, 1997.
- K. Mengel et al. Detection of monochromatic photons betwen 50 MeV and 790 MeV with a PbWO-4 scintillator array. IEEE Trans. Nucl. Sci., 45:681-685, 1998.
- R. Novotny et al. Electromagnetic calorimetry with PbWO-4 in the energy regime below 1 GeV. IEEE Trans. Nucl. Sci., 47:1499-1502, 2000.
- M. Hoek et al. Charged particle response of PbWO-4. Nucl. Instr. Meth., A486:136-140, 2002.
- PANDA collaboration, EMC Technical Design Report. Technical report, Darmstadt, 2008. arXiv:0810.1216v1.
- N. Akopov et al. The HERMES dual-radiator ring imaging Cerenkov detector. Nucl. Instr. Meth., A479:511-530, 2002.
- I.-H. Chiang et al. KOPIO -a search for K 0 → π 0 νν. 1999. KOPIO Proposal.
- K. Nakamura et al. (Particle Data Group). Re- view of particle physics. J. Phys., G 37:075021, 2010.
- A. Capella et al. Dual parton model. PHYSICS REPORTS, 236(4&5):225-329, 1994.
- M. Bleicher et al. Relativistic hadron- hadron collisions in the ultra-relativistic quan- tum molecular dynamics. Nucl. Part. Phys., 25:1859-1896, 1999.
- F. Hügging. Development of a Micro-Vertex- Detector for the PANDA-Experiment at the FAIR facility. IEEE Nuclear Science Symposium Conference Record, N30(190):1239-1243, 2006.
- Th. Würschig. Design Optimization of the PANDA Micro-Vertex-Detector for High Per- formance Spectroscopy in the Charm Quark Sector. PhD thesis, Universität Bonn, urn:nbn:de:hbz:5N-26230, 2011.
- G.R. Lynch and O.I. Dahl. Approximations to multiple Coulomb scattering. Nucl. Instr. Meth., B58:6s-10s, 1991.
- G. Kramberger et al. Superior radiation toler- ance of thin epitaxial silicon detectors. Nucl. Instr. Meth., A515:665-670, 2003.
- E. Fretwurst. Recent advancements in the de- velopment of radiation hard semiconductor de- tectors for S-LHC. RD50 Workshop, Helsinki, 2005.
- D. Calvo et al. Thinned epitaxial silicon hybrid pixel sensors for the PANDA experiment. Nucl. Instr. Meth., A594, 2008.
- F. Antinori et al. Infrared laser testing of AL- ICE silicon pixel detector assemblies. Nucl. In- str. Meth., A568:13-17, 2006.
- F. Antinori et al. The ALICE pixel detector readout chip test system. Proceedings of Sev- enth Workshop on Electronics for LHC exper- iments, CERN-LHCC-2001-034, 2001.
- A. Tengattini. Radiation damage effects on epitaxial silicon devices for the PANDA exper- iment. Master's thesis, Università degli Studi di Torino, 2010.
- G. Lindström et al. Proceedings of the 10th European Symposium on Semiconductor De- tectors. Nucl. Instr. Meth., A568-1:1-474, 2006.
- F. Faccio and G. Cervelli. Radiation-induced edge effects in deep submicron CMOS transis- tors. IEEE Trans. Nucl. Sci., 52:2413-2420, 2005.
- I. Perić et al. The FEI3 readout chip for the ATLAS pixel detector. Nucl. Instr. Meth., A565:178-187, 2006.
- R. Beccherle et al. MCC: the module controller chip for the ATLAS pixel detector. Nucl. Instr. Meth., A492, 2002.
- S. Schnetzer for the CMS Pixel Collaboration. The CMS pixel detector. Nucl. Instr. Meth., A501, 2003.
- A. Kluge et al. The ALICE silicon pixel detec- tor. Nucl. Instr. Meth., A501, 2007.
- D. Calvo et al. ToPix: The first prototype of pixel readout for PANDA experiment. Nucl. Instr. Meth., A596:96-99, 2008.
- T. Calin, M. Nicolaidis and R. Velazco. Upset hardened memory design for submicron CMOS technology. IEEE Trans. Nucl. Sci., 43:2874- 2878, 1996.
- G. Anelli et al. Radiation tolerant VLSI cir- cuits in standard deep submicron CMOS tech- nologies for the LHC experiments: Practi- cal design aspects. IEEE Trans. Nucl. Sci., 46:1690-1696, 1999.
- D. Bisello et al. The SIRAD irradiation facility for bulk damage and single event effects stud- ies. Proceedings of the 2nd SIRAD Workshop LNL INFN, pages 426-434, 2004.
- L. Zotti et al. Study of the single event upset on ToPix 2. PANDA MVD-note, 008, 2011.
- L.W. Connell et al. Modeling the heavy ion upset cross section. IEEE Tran. Nucl. Science, 42, 1995.
- M. Huhtinen and F. Faccio. Computational method to estimate single event upset rates in an accelerator enviroment. Nucl. Intstr. Meth., A450:155-172, 2000.
- L. Zotti, D. Calvo and R. Kliemt. Rate Study in the Pixel Part of the MVD. PANDA MVD- note, 007, 2011.
- JESD8-13 JEDEC. Scalable Low-Voltage Sig- naling for 400 mV. (SLVS-400).
- FAIR/PANDA/Technical Design Report -MVD 65
- F. Krummenacher. Pixel detectors with lo- cal intelligence: an IC designer point of view. Nucl. Instr. Meth., A305(3):527-532, 1991.
- I. Perić. Design and realization of integrated circuits for the readout of pixel sensors in high- energy physics and biomedical imaging. PhD thesis, Universität Bonn, 2004.
- P.A. Totta and R.P. Sopher. SLT device met- allurgy and its monolithic extension. IBM Res. Develop, 13 N.3, 1969.
- M. Noy et al. Characterization of the NA62 Gigatracker and of column readout ASIC. TWEPP, 2010.
- Rui de Oliveira. Low mass ALICE pixel bus. ALICE Workshop, 2010.
- CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH. http://www.cismst.de, Oct 2011.
- Rose Collaboration (RD48). Third RD48 Sta- tus Report, Dec 1999.
- M. Moll, E. Fretwurst and G. Lindström. Leak- age current of hadron irradiated silicon detec- tors material dependence. Nucl. Instr. Meth., A426(1):87-93, 1999.
- J. Ellison and DØ collaboration. Silicon mi- crostrip wedge detectors for the DØ silicon tracker. Nucl. Instr. Meth., A342:33-38, 1994.
- A.S. Brogna et al. N-XYTER, a CMOS read- out ASIC for high resolution time and ampli- tude measurements on high rate multi-channel counting mode neutron detectors. Nucl. Instr. Meth., A568, Issue 1:pp. 301-308, 2006.
- K. Kasinski, R. Szczygiel and P. Grybos. TOT01, a Time-over-Threshold based readout chip in 180 nm CMOS technology for silicon strip detectors. JINST 6 C01026, 2011.
- K. Kasinski, R. Szczygiel and P. Grybos. Evo- lution of a prototype silicon strip detector read- out ASIC for the STS. GSI Scientific Report 2010, page 232, May 2011.
- R. Yarema et al. Fermilab Silicon Strip Read- out Chip for BTeV. IEEE Trans. Nucl. Sci., 52, No. 3:pp. 799-804, 2005.
- P. Moreira et al. The GBT Project. In Proceed- ings of the Topical Workshop on electronics for particle physics, pages 342-346, Paris, France, Sept 21-25 2009.
- H. Sohlbach. Readout controller design for the MVD Si-strip sensors. March 2011. XXXVI. PANDA Collaboration Meeting.
- Karsten Koop. FPGA-basierte Auslese von Silizium-Streifen-Detektoren. Diploma Thesis, Universität Bonn, 2009.
- J.J. Steijger. The lambda wheels, a silicon ver- tex detector for HERMES. Nucl. Instr. Meth., A453 (1.2):98-102, 2000.
- duPont. General Specifications of Kapton Polyimide Films, Jun 2010. http://www2\. dupont.com/Kapton/en_US/, last visited on Jul 3, 2011.
- Th. Würschig, L. Ackermann, F. Krüger, R. Schnell and H.-G. Zaunick. Setup of a test- station for double-sided silicon microstrip de- tectors. PANDA-MVD-note, 005, 2010.
- D. Betta et al. Development of a fabrication technology for double-sided AC-coupled sili- con microstrip detectors. Nucl. Instr. Meth., 460:306-315, 2001.
- M. Raymond et al. The CMS Tracker APV25 0.25 µm CMOS Readout Chip. Paper presented at the 6th workshop on electronics for LHC ex- periments, Krakau, Poland, Sept 2000. References
- P. Moreira et al. The GBT project. Proceedings of the TWEPP-09 Conference, CERN-2009- 006:342-346, 2009.
- J. Troska et al. The versatile transceiver proof of concept. Proceedings of the TWEPP-09
- Conference, CERN-2009-006:347-351, 2009.
- P. Moreira et al. The GBT-SerDes ASIC pro- totype. JINST 5 C11022, doi: 10.1088/1748- 0221/5/11/C11022.
- Experimental Physics and Industrial Control System
- O. Cobanoglu, P. Moreira and F. Faccio. A radiation tolerant 4.8 Gb/s serializer for the Giga-bit transceiver. Proceedings of the TWEPP-09 Conference, CERN-2009-006:570- 574, 2009.
- M. Menouni, P. Gui and P. Moreira. The GB- TIA, a 5 Gbit/s radiation-hard optical receiver for the SLHC upgrades. Proceedings of the TWEPP-09 Conference, CERN-2009-006:326- 330, 2009.
- L. Amaral et al. A 5 Gb/s radiation toler- ant laser driver in CMOS 0.13 µm technol- ogy. Proceedings of the TWEPP-09 Confer- ence, CERN-2009-006:321-325, 2009.
- A. Gabrielli et al. The GBT-SCA, a radia- tion tolerant ASIC for detector control applica- tions in SLHC experiments. Proceedings of the TWEPP-09 Conference, CERN-2009-006:557- 560, 2009.
- S. Baron, J.P. Cachemiche, F. Marin, P. Mor- eira and C. Soos. Implementing the GBT data transmission protocol in FPGAs. Proceedings of the TWEPP-09 Conference, CERN-2009- 006:631-635, 2009.
- B. Allongue, G. Blanchot, F. Faccio, C. Fuentes, S. Michelis et al. Low noise DC to DC converters for the SLHC experiments. Jinst, 5, 2010.
- D. Calvo, P. De Remigis, M. Mignone, T. Quagli and R. Wheadon. First prototypes of low mass cables for the pixel detector of the Micro-Vertex-Detector. PANDA MVD note, 09, 2011.
- S. Bonacini, K. Kloukinas and P. Mor- eira. Elink: a radiation hard low power electrical link for chip to chip communica- tion. TWEPP-09 Proceedings, CERN-2009- 690:422-425, 2009.
- G.R. Almen, P.D. Mackenzie, V. Malhotra and R.K. Maskell. Fiberite 954: cyanate ester sys- tems. SPIE -Design of Optical Instruments, 1960:288-294, 1992.
- G.R. Almen, P.D. Mackenzie, V. Malhotra and R.K. Maskell. 954: A family of toughened cyanate ester resins. Proceedings 23rd Inter- national SAMPE Technical Conference, pages 947-958, Oct 21-24 1991.
- G. Giraudo et al. The SDD and SSD support structure for the ALICE Inner Tracking Sys- tem. Jinst 4 P01003, 2009.
- M. Tavlet, A. Fontaine and H. Schonbacher. Compilation of Radiation Damage Test Data: Thermoset and thermoplastic resins, compos- ite material. CERN 98-01 Technical Inspection And Safety Commission, May 1998.
- M. Pimenta dos Santos. Report Engeneering Specification. EDMS 502.
- S. Spataro. Simulation and event reconstruc- tion inside the pandaroot framework. Journal of Physics: Conference Series, 119(3):032035, 2008.
- Geant3 manual. CERN program library W5013, 1993.
- Geant4: An object oriented toolkit for simula- tion in HEP. Geneva, http://geant4.cern. ch, last visited Nov 22, 2011.
- I. Hřivnáčová et al. The virtual Monte Carlo. 2003.
- Rene Brun and Fons Rademakers. Root -an object oriented data analysis framework. Nucl. Instr. Meth., A389:81-86, 1996. Proceedings AIHENP'96 Workshop, Lausanne, Sep. 1996.
- Torbjorn Sjostrand, Stephen Mrenna and Pe- ter Z. Skands. A brief introduction to PYTHIA 8.1. Comput. Phys. Commun., 178:852-867, 2008.
- EvtGen documentation. http://www.slac. stanford.edu/ ~lange/EvtGen, last visited Nov 22, 2011.
- A. Capella et al. Dual parton model. PHYSICS REPORTS, 236(4&5):225-329, 1994.
- S.A. Bass et al. Microscopic Models for Ultra- relativlstic Heavy Ion Colllslons. Prog. Part. Nucl. Phys., 41:255-369, 1998.
- M. Bleicher et al. Relativistic hadron- hadron collisions in the ultra-relativistic quan- tum molecular dynamics. Nucl. Part. Phys., 25:1859-1896, 1999.
- C. Höppner, S. Neubert, B. Ketzer and S. Paul. A novel generic framework for track fitting in complex detector systems. Nucl. Instr. Meth., A620(2-3):518 -525, 2010.
- R.E. Kalman. A new approach to linear filter- ing and prediction problems. J. Basic Eng., 82:34, 1961.
- R. Frühwirth. Application of Kalman filtering to track and vertex fitting. Nucl. Instr. Meth., A262(2-3):444 -450, 1987.
- V. Innocente et al. The GEANE program. CERN Program Library, 1991. W5013-E.
- A. Fontana, P. Genova, L. Lavezzi and A. Ro- tondi. Track following in dense media and in- homogeneous magnetic fields. PANDA report PV/01-07, 2007.
- L. Lavezzi. The fit of nuclear tracks in high precision spectroscopy experiments. PhD the- sis, Università degli Studi di Pavia, 2007.
- S. Bianco, Th. Würschig, T. Stockmanns and K.-Th. Brinkmann. The CAD model of the PANDA Micro-Vertex-Detector in physics sim- ulations. Nucl. Instr. Meth., A654:630-633, 2011.
- ISO 10303-1:1994. Industrial Automation Sys- tems and Integration Product Data Repre- sentation and Exchange -Overview and Fun- damental Principles. International Standard, ISOTC184/SC4, 1994.
- Th. Würschig. Basic Conventions for the CAD-Modelling of the Micro-Vertex-Detector. Panda MVD-note, 003, 2008.
- R.A. Boie V. Radeka. Centroid finding method for position-sensitive detectors. IEEE Trans. Nucl. Sci., 178:543-554, 1980.
- R. Frühwirth, A. Strandlie and W. Wal- tenberger. Helix fitting by an extended rie- mann fit. Nuclear Instruments and Meth- ods in Physics Research Section A: Accelera- tors, Spectrometers, Detectors and Associated Equipment, 490(1-2):366-378, 2002.
- PANDA STT Group. Technical Design Report of the PANDA STT, 2011.
- Pierre Billoir and S. Qian. Fast vertex fitting with a local parametrization of tracks. Nucl. Instr. Meth., A311:139-150, 1992.
- P. Avery. Applied fitting theory IV: Formulas for track fitting. CBX 92-45.
- P. Avery. Applied fitting theory V: Track fit- ting using the Kalman filter. CBX 92-39.
- A. Giammanco. Particle identification with en- ergy loss in the CMS silicon strip tracker. CMS Note, 005, 2008.
- G. Schepers et al. Particle identification at PANDA. Technical Report, Report of the PID TAG, 2009.
- G. Lindström. Radiation damage in silicon de- tectors. Nucl. Instr. Meth., A512(1-2):30-43, 2003. Proceedings of the 9th European Sym- posium on Semiconductor Detectors: New De- velopments on Radiation Detectors.
- A. Vasilescu. Fluence normalization based on the niel scaling hypothesis. In 3rd ROSE Work- shop on Radiation Hardening of Silicon Detec- tors, DESY-PROCEEDINGS-1998-02, DESY Hamburg, Feb 12-14 1998.
- A. Lehrach. Maximum luminosities with nuclear targets in HESR. Jahresbericht, Forschungszentrum Jülich GmbH, Institut für Kernphysik, 2006.
- Marius C. Mertens. Der PANDA Mikro Ver- tex Detektor: Entwicklung eines Labormesssys- tems, Simulation der MVD-Betriebsparameter sowie Untersuchungen zur Auflösung der Bre- ite des D * s0 (2317). PhD thesis, Ruhr- Universität Bochum, 2010.
- PANDA Computing Group. Status of the Pan- daRoot simulation and analysis framework. Scientific report, GSI, 2007.
- Th. Würschig. Design Optimization of the PANDA Micro-Vertex-Detector for High Per- formance Spectroscopy in the Charm Quark Sector. PhD thesis, Universität Bonn, 2011.
- F. Hinterberger. Beam-target Interaction and Intrabeam Scattering in the HESR. Technical Report FZJ 4206, 2006. ISSN: 0944-2952.
- A. Smirnov, A. Sidorin and D. Krestnikov. Effective Luminosity Simulation for PANDA experiment at FAIR. Proc. of COOL 2009, Lanzhou, THPMCP(002):1-3, 2009.
- L. Zotti, D. Calvo and R. Kliemt. Rate study in the pixel part of the MVD. PANDA MVD- note, 007, 2011.
- M. Mertens, Th. Würschig and R. Jäkel. Count rate studies for the Micro-Vertex-Detector. PANDA MVD-note, 004, 2010.
- K. Nakamura et al. (Particle Data Group). Re- view of particle physics. J. Phys., G 37:075021, 2010.
- J. C. Hill et al. Strange particle production in anti-p p annihilations at 8.8-GeV/c. Nucl. Phys., B227:387, 1983.
- A.B. Kaidalov and P.E. Volkovitsky. Binary reactions in anti-p p collisions at intermediate energies. Z.Phys., C63:517-524, 1994.
- René Jäkel. Resolution Studies for the Mi- cro Vertex Detector of the PANDA Experiment and the Reconstruction of Charmed Mesons for Specific Hadronic Channels. PhD thesis, TU Dresden, 2009.
- R. Schnell, M. Becker, K.-Th. Brinkmann, K. Koop, Th. Würschig and H.-G. Zaunick. FPGA- based readout for double-sided silicon strip de- tectors. JINST 6, (C01008), 2011.
- S. Bianco. Characterization of the PANDA Micro-Vertex-Detector and Analysis of the First Data Measured with a Tracking Station. IEEE Nuclear Science Symposium Conference Record, (N42(278)):1149-1152, 2010. References
- Marius C. Mertens. Der PANDA Mikro Ver- tex Detektor: Endwicklung eines Labormessys- tems, Simulation der MVD-Betriebsparameter
- Direct Memory Access sowie Untersuchung zur Auflösung der Breite des D * s0 (2317). PhD thesis, Ruhr-Universität Bochum, 2010.
- H. Zimmermann. OSI reference model -the ISO Model of Architecture for Open Systems Inter- connection. IEEE Transactions on Communi- cations, 28(4):425-432, 1980.
- M. Drochner et al. A VME controller for data aquisition with flexible gigabit data link to PCI. Proceedings of the 12th IEEE Real Time congress on Nuclear and Plasma Science, June 2001.
- Qt 4 Framework. www.trolltech.com, last vis- ited on Nov 22, 2011.
- H. Kleines et al. Developments for the Readout of the PANDA Micro-Vertex-Detector. IEEE Conference Record NSS-MIC-RTSD, 2009.
- David-Leon Pohl. Charakterisierung eines Silizium-Pixel-Auslesechips für den PANDA Mikro-Vertex-Detector. Master's thesis, Univer- sität Bochum, 2011. References
- S. Piano. Search for Sigma Hypernuclear states with the FINUDA Spectrometer. PhD thesis, Università degli Studi di Trieste, 2001.
- V. Blobel. Software alignment for tracking de- tectors. Nucl. Instr. Meth., A566, 2006.
- V. Blobel and C. Kleinwort. A new method for the high-precision alignment of track detec- tors. Number DESY-02-077, hep-ex/0208021, March 2002.
- V. Blobel. MILLEPEDE II package, description and code. http://www.desy.de/ ~blobel.
- ALICE Collaboration. JINST 5, (P03003), 2010.
- LHCb Collaboration. LHCb VELO technical design report. LHCb TDR 5, (CERN-LHCC 2001-010), 2001.
- D. Krücker. OTR alignment method descrip- tion. www-hera-b.desy.de/ ~kruecker/OTR. html.
- R. Mankel. A Canonical Procedure to Fix External Degrees of Freedom in the Internal Alignment of a Tracking System. HERA-B 99- 087.
- D. Pitzl et al. The H1 silicon vertex detector. Nucl. Instr. Meth., A454, 2000.
- S. Viret, C. Parkes and D. Petrie. LHCb VELO software alignment -Part I: the alignment of the VELO modules in their boxes. (GLAS- PPE/2006-03), 2006.
- S. Viret, C. Parkes and M. Gersabeck. LHCb VELO software alignment -Part II: the align- ment of the VELO detector halves. (GLAS- PPE/2007-13), 2007.
- S. Viret, M. Gersabeck and C. Parkes. VELO alignment webpage. ppewww.ph.gla.ac.uk/ LHCb/VeloAlign, last visited on Nov 22, 2011.
- 20 Cell output for an input charge of 0.5 fC . . . . . . . . . . . . . . . . . 48
- 21 ToPix v2 simplified schematic . . . . 48
- 22 ToPix v2 die . . . . . . . . . . . . . 49
- 23 Dice cell schematic . . . . . . . . . . 49
- 24 Diagram of the data acquisition sys- tem for testing ToPix v2 . . . . . . . 49
- 25 Input-output transfer function . . . 50
- 26 Deviation from linear fit . . . . . . . 50
- 33 Weibull fit to the experimental ion data of the ToPix v2 configuration register . . . . . . . . . . . . . . . . 52
- Analog Cell Layout . . . . . . . . . . 54
- 38 CSA with a feedback circuitry which automatically compensates for the detector leakage current . . . . . . . 55
- 39 Schematic of the constant feedback current generator . . . . . . . . . . . 55
- 40 Comparator schematic . . . . . . . . 56
- 42 Calibration circuit schematic . . . . 56
- 43 Reconstructed signal shapes with threshold scan for different input charge values . . . . . . . . . . . . . 57
- 44 ToPix v3 extrapolated baseline be- fore and after equalisation . . . . . . 57
- 45 ToPix v3 baseline distribution before and after correction . . . . . . . . . 57
- 46 ToPix v3 pixel map for the four tested samples . . . . . . . . . . . . 58
- 48 ToPix v3 measured noise . . . . . . . 58
- 49 ToPix v3 transfer function for nomi- nal feedback current -full range . . . 58 3.50 ToPix v3 transfer function for nomi- nal feedback current -0.6 fC range . 59
- 51 ToPix v3 transfer function for halved feedback current -full range . . . . . 59
- 52 ToPix v3 transfer function for halved feedback current -0.6 fC range . . . 59
- 53 Dead pixel counts in the tested as- semblies . . . . . . . . . . . . . . . . 60
- 54 Source profile obtained from S8 (Epi- 75) assembly using a 90 Sr source . . 60
- 55 Pixel matrix layout . . . . . . . . . . 60
- 56 Scheme of the assembly . . . . . . . 61
- 57 Photograph of epitaxial sensor pro- duced at FBK . . . . . . . . . . . . . 61
- 58 S2 module: two readout chips are bump bonded to a single sensor . . . 61
- 61 The complete forward pixel assembly scheme . . . . . . . . . . . . . . . . . 62
- 62 Busses for different pixel modules . . 62
- 64 SU8 strips . . . . . . . . . . . . . . . 63
- 65 Slope of an SU8 strip . . . . . . . . . 63
- 66 Staircase multilayer . . . . . . . . . . 63
- 67 Bus with module controllers . . . . . 64
- 1 Floorplan of wafer with full size pro- totype sensors . . . . . . . . . . . . . 67
- 2 Wafer including Prototype Sensors . 68
- 3 Layout detail of MVD-Barrel DSSD Sensors . . . . . . . . . . . . . . . . 68
- I-V-Curves of Si-Strip prototype Sensors . . . . . . . . . . . . . . . . 69
- 6 Effective bulk doping concentration vs. 1 MeV equiv. neutron fluence . . 69
- 7 Annealing behaviour of leakage cur- rent characteristics . . . . . . . . . . 70
- 8 Annealing behaviour of capacitance characteristics . . . . . . . . . . . . . 70
- 11 Schematic of modified ToPix ASIC for strip readout . . . . . . . . . . . 73
- 12 Schematic of the Module Data Con- centrator . . . . . . . . . . . . . . . 74
- 13 Basic concept for the hybridisation of double-sided strip detectors . . . . 75
- 14 Illustration of the hybridisation con- cept for the strip barrel part . . . . . 76
- 15 Schematic cross section of a strip hy- brid structure in the barrel part . . . 77
- 16 Illustration of the hybridisation con- cept for the strip disks . . . . . . . . 77
- 17 Layout of pitch adaptor hybrid . . . 77
- 18 Photograph of a finally assembled detector module for the laboratory test setup . . . . . . . . . . . . . . . 78
- 19 Photograph of the fabricated pitch adapter and schematics of the pad geometry . . . . . . . . . . . . . . . 78
- 20 Results obtained with a laboratory setup for double-sided strip detectors 79
- 1 GBT and VL scheme . . . . . . . . . 82
- 2 GBT data packet format . . . . . . . 82
- 3 Architecture of the lower levels of the PANDA DAQ system . . . . . . . . . 83
- 5 Low mass cables implementing alu- minium microstrips. . . . . . . . . . 86
- 6 Linear resistance measured for the first 20 tracks of each sample. . . . . 86
- 7 Total jitter evaluated for just the mi- crostrips without any transceivers. . 87
- 8 Example of an eye diagram. . . . . . 87 5.
- 9 Longitudinal cross-section of the MVD and the cross-pipe sector . . . 88
- 10 Maximum vertical displacement of the frame under static load . . . . . 88
- 11 Cams system. Cylindrical cam on upper end for fixing the half frame . 89
- 12 Cams system. The V insert . . . . . 89
- 13 Cams system. The U insert . . . . . 89 5.14 Structure of a pixel barrel super module . . . . . . . . . . . . . . . . . 90
- 15 Transverse section of a pixel barrel super module . . . . . . . . . . . . . 90 5.16 Support structure of the pixel barrel 90 5.17 Half barrel assembled on the cone support . . . . . . . . . . . . . . . . 91
- 18 The cut of the shape of the disk from the plate with wire EDM . . . . . . 91
- 19 Machining of the disks elements . . . 91 5.20 Sketch of the set of half disks com- posing half of the pixel forward de- tector . . . . . . . . . . . . . . . . . 92
- 21 Sketch of the support structure for the strip disks . . . . . . . . . . . . . 92
- 22 Sketch of the common support barrel for BL3 and BL4 . . . . . . . . . . . 93
- 23 Sketch of the set of two strip super modules with a common cooling pipe 93
- 24 The Pixel volume, with 2 barrels and 6 disks . . . . . . . . . . . . . . . . . 95
- 25 Test results: Young's modulus [MPa] vs radiation levels for POCO FOAM 95
- 26 Test results: Young's modulus [Mpa] vs radiation levels for POCO HTC . 95
- 27 Test results: thermal conductivity [W/(m • K)] vs radiation levels for POCO FOAM . . . . . . . . . . . . 95
- 28 Test results: thermal conductivity [W/(m•K)] vs radiation levels for POCO HTC . . . . . . . . . . . . . . 95
- 29 Half small disk in carbon foam com- pleted of chips, detectors, cooling tube and fitting . . . . . . . . . . . . 96
- 30 Half big disk in carbon foam com- pleted of chips, detectors, cooling tube and plastic fittings . . . . . . . 96
- 31 FEM analysis results with real con- figuration . . . . . . . . . . . . . . . 97
- 32 FEM analysis results with test con- figuration . . . . . . . . . . . . . . . 97
- 33 Carbon foam disk with 6 inserted cooling pipes and 54 resistors (dummy chips) . . . . . . . . . . . . 97
- 34 Test results: Thermal map of disk prototype, dissipating 94 W . . . . . 97
- 35 Pressure drop [bar] in a S-shape tube vs mass flow rate [l/min] . . . . . . . 97
- 36 Pressure drop [bar] in a U-shape tube vs mass flow rate [l/min] . . . . . . . 98