The evolution of barred spiral galaxies in the Hubble Deep Fields North and South (original) (raw)

Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence

The Astrophysical Journal, 2008

We have analyzed the redshift-dependent fraction of galactic bars over 0:2 < z < 0:84 in 2157 luminous face-on spiral galaxies from the COSMOS 2 deg 2 field. Our sample is an order of magnitude larger than that used in any previous investigation, and is based on substantially deeper imaging data than that available from earlier wide-area studies of high-redshift galaxy morphology. We find that the fraction of barred spirals declines rapidly with redshift. Whereas in the local universe about 65% of luminous spiral galaxies contain bars (SB+SAB), at z $ 0:84 this fraction drops to about 20%. Over this redshift range the fraction of strong bars (SBs) drops from about 30% to under 10%. It is clear that when the universe was half its present age, the census of galaxies on the Hubble sequence was fundamentally different from that of the present day. A major clue to understanding this phenomenon has also emerged from our analysis, which shows that the bar fraction in spiral galaxies is a strong function of stellar mass, integrated color and bulge prominence. The bar fraction in very massive, luminous spirals is about constant out to z $ 0:84, whereas for the low-mass, blue spirals it declines significantly with redshift beyond z ¼ 0:3. There is also a slight preference for bars in bulge-dominated systems at high redshifts that may be an important clue toward the coevolution of bars, bulges, and black holes. Our results thus have important ramifications for the processes responsible for galactic downsizing, suggesting that massive galaxies matured early in a dynamical sense, and not just as a result of the regulation of their star formation rate. 12 Bars that are highly elliptical and have rectangular isophotes are classified as SB galaxies whereas those with more oval shapes are classified as SAB or ovally distorted galaxies.

Using Bars as Signposts of Galaxy Evolution at High and Low Redshifts

Astrophysics and Space Science Library, 2004

An analysis of the NICMOS Deep Field shows that there is no evidence of a decline in the bar fraction beyond z∼0.7, as previously claimed; both bandshifting and spatial resolution must be taken into account when evaluating the evolution of the bar fraction. Two main caveats of this study were a lack of a proper comparison sample at low redshifts and a larger number of galaxies at high redshifts. We address these caveats using two new studies. For a proper local sample, we have analyzed 134 spirals in the near-infrared using 2MASS (main results presented by Menendez-Delmestre in this volume) which serves as an ideal anchor for the low-redshift Universe. In addition to measuring the mean bar properties, we find that bar size is correlated with galaxy size and brightness, but the bar ellipticity is not correlated with these galaxy properties. The bar length is not correlated with the bar ellipticity. For larger high redshift samples we analyze the bar fraction from the 2-square degree COSMOS ACS survey. We find that the bar fraction at z∼0.7 is ∼50%, consistent with our earlier finding of no decline in bar fraction at high redshifts.

A Multivariate Analysis of Galaxies in the Hubble Deep Field–North

The Astrophysical Journal, 2001

We use the ultraviolet and optical WFPC2 and near-infrared NICMOS images of the Hubble Deep Field North to measure and statistically compare an array of parameters for over 250 of the galaxies it contains. These parameters include redshift, rest-frame visible asymmetry and concentration, bolometric luminosity and extinction-corrected star formation rate. We find only one strong correlation, between bolometric luminosity and star formation rate, from which early-type galaxies noticeably deviate. When our asymmetry measurements are combined with those of a sample of nearby galaxies covering the full Hubble sequence, we find a weak correlation between redshift and rest-frame visible asymmetry, consistent with the qualitative evidence of galaxy morphological evolution from these and other deep

Preprint typeset using LATEX style emulateapj v. 5/2/11 THE TWO-PHASE FORMATION HISTORY OF SPIRAL GALAXIES TRACED BY THE COSMIC EVOLUTION OF THE BAR FRACTION

2014

We study the evolution of galactic bars and the link with disk and spheroid formation in a sample of zoom-in cosmological simulations. Our simulation sample focuses on galaxies with present-day stellar masses in the 10 10−11 M ⊙ range, in field and loose group environments, with a broad variety of mass growth histories. In our models, bars are almost absent from the progenitors of present-day spirals at z > 1.5, and they remain rare and generally too weak to be observable down to z ≈ 1. After this characteristic epoch, the fractions of observable and strong bars raise rapidly, bars being present in 80% of spiral galaxies and easily observable in two thirds of these at z ≤ 0.5. This is quantitatively consistent with the redshift evolution of the observed bar fraction, although the latter is presently known up to z ≈ 0.8 because of band-shifting and resolution effects. Our models hence predict that the decrease in the bar fraction with increasing redshift should continue with a fraction of observable bars not larger than 10-15% in disk galaxies at z > 1. Our models also predict later bar formation in lower-mass galaxies, in agreement with existing data. We find that the characteristic epoch of bar formation, namely redshift z ≈ 0.8 − 1 in the studied mass range, corresponds to the epoch at which today's spirals acquire their disk-dominated morphology. At higher redshift, disks tend to be rapidly destroyed by mergers and gravitational instabilities and rarely develop significant bars. We hence suggest that the bar formation epoch corresponds to the transition between an early "violent" phase of spiral galaxy formation at z ≥ 1 and a late "secular" phase at z ≤ 0.8. In the secular phase, the presence of bars substantially contributes to the growth of the (pseudo-)bulge, but the bulge mass budget remains statistically dominated by the contribution of mergers, interactions and disk instabilities at high redshift. Early bars at z > 1 are often short-lived, while most of the bars formed at z ≤ 1 persist down to z = 0, late cosmological gas infall being necessary to maintain some of them.

The Environment of Barred Galaxies in the Low-Redshift Universe

The Astrophysical Journal, 2014

We present a study of the environment of barred galaxies using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey. We use four different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number count of neighbor galaxies, the overdensity of the local environment, and the membership of our galaxies to galaxy groups to segregate central and satellite systems. For barred galaxies as a whole, we find a very weak difference in all the quantities compared to unbarred galaxies of the control sample. When we split our sample into early-and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within ∼50 kpc around the barred galaxies when compared to unbarred galaxies form the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.

Spiral and irregular galaxies in the Hubble Deep Field North-Comparison with early types and implications for the global SFR density

arXiv preprint astro-ph/0010131, 2000

Abstract: We analyze a morphologically-selected complete sample of 52 late-type (spiral and irregular) galaxies in the Hubble Deep Field North with total K-magnitudes brighter than K= 20.47. This sample exploits in particular the ultimate imaging quality achieved by HST in this field, allowing us to clearly disentangle the galaxy morphologies, based on accurate profiles of the surface brightness distributions. Our purpose was to investigate systematic differences between the two classes, as for colours, redshift distributions and ages of the ...

Spiral structure in barred galaxies. Observational constraints to spiral arm formation mechanisms

Monthly Notices of the Royal Astronomical Society, 2018

A method, which we have developed for determining corotation radii, has allowed us to map in detail the radial resonant structures of barred spiral galaxies. Here, we have combined this information with new determinations of the bar strength and the pitch angle of the innermost segment of the spiral arms to find relationships between these parameters of relevance to the dynamical evolution of the galaxies. We show how (1) the bar mass fraction, (2) the scaled bar angular momentum, (3) the pitch angle, and (4) the shear parameter vary along the Hubble sequence, and we also plot along the Hubble sequence (5) the scaled bar length, (6) the ratio of bar corotation radius to bar length, (7) the scaled bar pattern speed, and (8) the bar strength. It is of interest to note that the parameters (2), (5), (6), (7), and (8) all show breaks in their behaviour at type Scd. We find that bars with high shear have only small pitch angles, while bars with large pitch angles must have low shear; we also find a generally inverse trend of the pitch angle with bar strength. An inference that at first seems counter-intuitive is that the most massive bars rotate most slowly but have the largest angular momenta. Among a further set of detailed results, we pick out here the 2:1 ratio between the number of spiral arms and the number of corotations outside the bar. These results give a guideline to theories of disc-bar evolution.

Galaxy Morphologies in the Hubble Ultra Deep Field: Dominance of Linear Structures at the Detection Limit

The Astrophysical Journal, 2005

Galaxies in the Hubble Ultra Deep Field (UDF) larger than 10 pixels (0.3 arcsec) have been classified according to morphology and their photometric properties are presented. There are 269 spirals, 100 ellipticals, 114 chains, 126 doubleclump, 97 tadpole, and 178 clump-cluster galaxies. We also catalogued 30 B-band and 13 V-band drop-outs and calculated their star formation rates. Chains, doubles, and tadpoles dominate the other types at faint magnitudes. The fraction of obvious bars among spirals is ∼ 10%, a factor of 2-3 lower than in other deep surveys. The distribution function of axial ratios for elliptical galaxies is similar to that seen locally, suggesting that ellipticals relaxed quickly to a standardized shape. The distribution of axial ratios for spiral galaxies is significantly different than locally, having a clear peak at ∼ 0.55 instead of a nearly flat distribution. The fall-off at small axial ratio occurs at a higher value than locally, indicating thicker disks by a factor of ∼ 2. The fall-off at high axial ratio could be from intrinsic triaxial shapes or selection effects. Inclined disks should be more highly sampled than face-on disks near the surface brightness limit of a survey. Simple models and data distributions demonstrate these effects. The decreased numbers of obvious spiral galaxies at high redshifts could be partly the result of surface brightness selection.

Explorations in Hubble Space: A Quantitative Tuning Fork

The Astronomical Journal, 2000

In order to establish an objective framework for studying galaxy morphology, we have developed a quantitative two-parameter description of galactic structure that maps closely on to Hubble's original tuning fork. Any galaxy can be placed in this "Hubble space," where the x-coordinate measures position along the early-to-late sequence, while the y-coordinate measures in a quantitative way the degree to which the galaxy is barred. The parameters defining Hubble space are sufficiently robust to allow the formation of Hubble's tuning fork to be mapped out to high redshifts. In the present paper, we describe a preliminary investigation of the distribution of local galaxies in Hubble space, based on the CCD imaging atlas of . We find that barred, weakly-barred, and unbarred galaxies are remarkably well-separated on this diagnostic diagram. The spiral sequence is clearly bimodal and indeed approximates a tuning fork: strongly-barred and unbarred spirals do not simply constitute the extrema of a smooth unimodal distribution of bar strength, but rather populate two parallel sequences. Strongly barred galaxies lie on a remarkably tight sequence, strongly suggesting the presence of an underlying unifying physical process. Rather surprisingly, weakly barred systems do not seem to correspond to objects bridging the parameter space between unbarred and strongly barred galaxies, but instead form an extension of the regular spiral sequence. This relation lends support to models in which the bulges of late-type spirals originate from secular processes driven by bars.

A Milky Way-like barred spiral galaxy at a redshift of 3

Nature

The majority of massive disk galaxies in the local Universe show a stellar barred structure in their central regions, including our Milky Way1,2. Bars are supposed to develop in dynamically cold stellar disks at low redshift, as the strong gas turbulence typical of disk galaxies at high redshift suppresses or delays bar formation3,4. Moreover, simulations predict bars to be almost absent beyond z = 1.5 in the progenitors of Milky Way-like galaxies5,6. Here we report observations of ceers-2112, a barred spiral galaxy at redshift zphot ≈ 3, which was already mature when the Universe was only 2 Gyr old. The stellar mass (M★ = 3.9 × 109 M⊙) and barred morphology mean that ceers-2112 can be considered a progenitor of the Milky Way7–9, in terms of both structure and mass-assembly history in the first 2 Gyr of the Universe, and was the closest in mass in the first 4 Gyr. We infer that baryons in galaxies could have already dominated over dark matter at z ≈ 3, that high-redshift bars could ...